Neural Network Compensation Method for Path Tracking Control of a Spherical Mobile Robot

Article Preview

Abstract:

This paper presents a neural network compensation strategy for the path tracking control of a spherical mobile robot BHQ-2 including a pendulum with two degrees of freedom. Based on our previous work, we propose a simplified method to decompose the dynamics model of BHQ-2 to be two sub-dynamics models. Applying the fuzzy guidance control method and a neural network compensation strategy, a path tracking controller for robot BHQ-2 is designed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1325-1328

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Li and J. Canny, Motion of two rigid bodies with rolling constraint, IEEE Trans. Autom. Control, Vol. 6 (1990), pp.62-72.

DOI: 10.1109/70.88118

Google Scholar

[2] T. Das and R. Mukherjee, Exponential stabilization of the rolling sphere, Automatica, Vol. 40 (2004), pp.1877-1889.

DOI: 10.1016/j.automatica.2004.06.003

Google Scholar

[3] T. Das and R. Mukherjee, Reconfiguration of a rolling sphere: A problem in evolute-involute geometry, J. Appl. Mech., Vol. 73 (2006), pp.590-597.

DOI: 10.1115/1.2164515

Google Scholar

[4] A. H. A. Javadi and P. Mojabi, Introducing august : A novel strategy for an omnidirectional spherical rolling robot, In: Proceedings of the 2002 IEEE International Conference On Robotics and Automation (ICRA), Washington, (2002), pp.3527-3533.

DOI: 10.1109/robot.2002.1014256

Google Scholar

[5] S. Bhattacharya and S. K. Agrawal, Spherical rolling robot: A design and motion planning studies, IEEE Trans. Robot. Autom., Vol. 16 (2000), pp.835-839.

DOI: 10.1109/70.897794

Google Scholar

[6] A. Halme, T. Schonberg and Y. Wang, Motion control a spherical mobile robot, In: Proceedings of the 1996 4th International Workshop On Advanced Motion Control (AMC), Tsu-City, (1996), pp.259-264.

DOI: 10.1109/amc.1996.509415

Google Scholar

[7] A. Bicchi, et al., Introducing the SPHERICLE,: An experimental testbed for research and teaching in nonholonomy, In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation (ICRA), Albuquerque, (1997), pp.2620-2625.

DOI: 10.1109/robot.1997.619356

Google Scholar

[8] A. Marigo and A. Bicchi, A local-local planning algorithm for rolling objects, In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, (2002), pp.1759-1764.

DOI: 10.1109/robot.2002.1014796

Google Scholar

[9] V. A. Joshi and R. N. Banavar, Motion analysis of a spherical mobile robot, Robotica, Vol. 27 (2008), pp.343-353.

DOI: 10.1017/s0263574708004748

Google Scholar

[10] V. A. Joshi and R. N. Banavar and R. Hippalgaonkar, Design and analysis of a spherical mobile robot, Mechanism and Machine Theory, Vol. 45 (2009), pp.130-136.

DOI: 10.1016/j.mechmachtheory.2009.04.003

Google Scholar

[11] Y. Cai, Q. Zhan and X. Xi, Path tracking control of a spherical mobile robot, Mechanism and Machine Theory, Vol. 51 (2012), pp.58-73.

DOI: 10.1016/j.mechmachtheory.2011.12.009

Google Scholar

[12] Y. Cai, Q. Zhan and X. Xi, Neural network control for the linear motion a spherical mobile robot, International Journal of Advanced Robotic Systems, Vol. 8 (2011), pp.79-87.

DOI: 10.5772/45711

Google Scholar