[1]
L. Costa, A. S. Miranda, M. Fillon and J. C. P. Claro. An analysis of the influence of oil supply conditions on the thermohydrodynamic performance of a single-groove journal bearing. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology. 2002(147): 133-144.
DOI: 10.1243/13506500360603561
Google Scholar
[2]
F. P. Brito, A. S. Miranda. Experimental Investigation of the Influence of Supply Temperature and Supply Pressure on the Performance of a Two Axial Groove Hydrodynamic Journal Bearing. Proceedings of IJTC2006: STLE / ASME International Joint Tribology Conference. San Antonio, TX, USA. 2006(10): 1-9.
DOI: 10.1115/1.2401206
Google Scholar
[3]
A. Arab Solghar, F. P. Brito, J. C. P. Claro, and S. A. Gandjalikhan Nassab. An experimental study of the influence of loading direction on the thermohydrodynamic behaviour of twin axial groove journal bearing. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology. 2011(225): 245-254.
DOI: 10.1177/1350650111401970
Google Scholar
[4]
L. Roy. Thermo-hydrodynamic Performance of Grooved oil Journal Bearing. Tribol. Int. 2009(42): 1187-1198.
DOI: 10.1016/j.triboint.2009.04.001
Google Scholar
[5]
Myung-Rae Cho, Hung-ju Shin, Dong-Chul Han. A Study on the Circumferential Groove Effects on the Minimum Oil Film Thickness in Engine Bearings. KSME Int. J., Vol. 14, No. 7, pp.737-743, (2000).
DOI: 10.1007/bf03184459
Google Scholar
[6]
Sami Naimi, Mnaouar Chouchance, Jean-Louis Liger. Steady state analysis of a Hydrodynamic short bearing supplied with a circumferential groove. C.R. MECANIQUE. 2010(338): 338-349.
DOI: 10.1016/j.crme.2010.06.003
Google Scholar
[7]
M. Deligant, P. Podevin, G. Descombes. CFD model for turbocharger journal bearing performances. Appl. Therm. ENG. 2011(31): 811-819.
DOI: 10.1016/j.applthermaleng.2010.10.030
Google Scholar
[8]
M K.P. Gertzos, P.G. Nikolakopoulos, C.A. Papadopoulos. CFD analysis of journal bearing hydrodynamic lubrication by Binghamlubricant. Tribol. Int. 2008 (41): 1190-1204.
DOI: 10.1016/j.triboint.2008.03.002
Google Scholar
[9]
Zenglin Guo, Toshio Hirano, Gordon Kirk, R.: Application of Computational Fluid Dynamic Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearing and Squeeze Film Damper. J. ASME, J. Eng. Gas Turb Power. (2005)127: 445-451.
DOI: 10.1115/1.1807415
Google Scholar
[10]
Huiping Liu, Hua Xu, Peter J. Ellison, Zhongmin Jin. Application of Computational Fluid Dynamics and Fluid-Structure Interaction Method to the Lubrication Study of a Rotor–Bearing System. Tribol. Lett. (2010) 38: 325–336.
DOI: 10.1007/s11249-010-9612-6
Google Scholar
[11]
Ferron, J., Frene, J. and Boncompain, R. A study of the thermohydrodynamic performance of a plain journal bearing. Comparison between theory and experiments. Trans. ASME, J. Lubrication Technol., 1983(105): 422-428.
DOI: 10.1115/1.3254632
Google Scholar
[12]
U. Singh, L. Roy, M. Sahu. Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove. Tribol. Int. 2008 (41): 1135–1144.
DOI: 10.1016/j.triboint.2008.02.009
Google Scholar