Effect Investigation of the Circumferential Grooves on the Static Characteristics of Hydrodynamic Journal Bearing Using CFD Method

Article Preview

Abstract:

The performance of a hydrodynamic journal bearing with different center circumferential grooves (CGs) is investigated using Computational fluid dynamics (CFD) simulation. The influences of the CG extended angel have been investigated based on the numerical model. The results show that the CG of millimeter range depth in load zone is not good for the bearing performance but it is opposite in unload zone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-321

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Costa, A. S. Miranda, M. Fillon and J. C. P. Claro. An analysis of the influence of oil supply conditions on the thermohydrodynamic performance of a single-groove journal bearing. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology. 2002(147): 133-144.

DOI: 10.1243/13506500360603561

Google Scholar

[2] F. P. Brito, A. S. Miranda. Experimental Investigation of the Influence of Supply Temperature and Supply Pressure on the Performance of a Two Axial Groove Hydrodynamic Journal Bearing. Proceedings of IJTC2006: STLE / ASME International Joint Tribology Conference. San Antonio, TX, USA. 2006(10): 1-9.

DOI: 10.1115/1.2401206

Google Scholar

[3] A. Arab Solghar, F. P. Brito, J. C. P. Claro, and S. A. Gandjalikhan Nassab. An experimental study of the influence of loading direction on the thermohydrodynamic behaviour of twin axial groove journal bearing. Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology. 2011(225): 245-254.

DOI: 10.1177/1350650111401970

Google Scholar

[4] L. Roy. Thermo-hydrodynamic Performance of Grooved oil Journal Bearing. Tribol. Int. 2009(42): 1187-1198.

DOI: 10.1016/j.triboint.2009.04.001

Google Scholar

[5] Myung-Rae Cho, Hung-ju Shin, Dong-Chul Han. A Study on the Circumferential Groove Effects on the Minimum Oil Film Thickness in Engine Bearings. KSME Int. J., Vol. 14, No. 7, pp.737-743, (2000).

DOI: 10.1007/bf03184459

Google Scholar

[6] Sami Naimi, Mnaouar Chouchance, Jean-Louis Liger. Steady state analysis of a Hydrodynamic short bearing supplied with a circumferential groove. C.R. MECANIQUE. 2010(338): 338-349.

DOI: 10.1016/j.crme.2010.06.003

Google Scholar

[7] M. Deligant, P. Podevin, G. Descombes. CFD model for turbocharger journal bearing performances. Appl. Therm. ENG. 2011(31): 811-819.

DOI: 10.1016/j.applthermaleng.2010.10.030

Google Scholar

[8] M K.P. Gertzos, P.G. Nikolakopoulos, C.A. Papadopoulos. CFD analysis of journal bearing hydrodynamic lubrication by Binghamlubricant. Tribol. Int. 2008 (41): 1190-1204.

DOI: 10.1016/j.triboint.2008.03.002

Google Scholar

[9] Zenglin Guo, Toshio Hirano, Gordon Kirk, R.: Application of Computational Fluid Dynamic Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearing and Squeeze Film Damper. J. ASME, J. Eng. Gas Turb Power. (2005)127: 445-451.

DOI: 10.1115/1.1807415

Google Scholar

[10] Huiping Liu, Hua Xu, Peter J. Ellison, Zhongmin Jin. Application of Computational Fluid Dynamics and Fluid-Structure Interaction Method to the Lubrication Study of a Rotor–Bearing System. Tribol. Lett. (2010) 38: 325–336.

DOI: 10.1007/s11249-010-9612-6

Google Scholar

[11] Ferron, J., Frene, J. and Boncompain, R. A study of the thermohydrodynamic performance of a plain journal bearing. Comparison between theory and experiments. Trans. ASME, J. Lubrication Technol., 1983(105): 422-428.

DOI: 10.1115/1.3254632

Google Scholar

[12] U. Singh, L. Roy, M. Sahu. Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove. Tribol. Int. 2008 (41): 1135–1144.

DOI: 10.1016/j.triboint.2008.02.009

Google Scholar