[1]
K. Jiao, X. G. Li, in Progress in Energy and Combustion Science, 37(3): 221-291 (2011).
Google Scholar
[2]
Z. H. Wang, C. Y. Wang and K. S. Chen, J. Power Sources, 94 : 40-50 (2001).
Google Scholar
[3]
U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc., 151: A399-A406 (2004).
Google Scholar
[4]
Y. Wang , C. Y. Wang, J. Power Sources, 153: 130-135 (2006).
Google Scholar
[5]
J. Nam , M. Kaviany, Int. J. Heat and Mass Transfer, 46: 4595–4611 (2003).
Google Scholar
[6]
L. You, H. Liu, Int. J. Heat Mass Transfer, 45: 2277–2287(2002).
Google Scholar
[7]
C. Y. Wang, Chem. Rev., 104: 4727-4766 (2004).
Google Scholar
[8]
V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee, and C. Y. Wang, J. Electrochem. Soc., 154(4): B419 (2007).
Google Scholar
[9]
J.T. Gostick, M.A. Ioannidis, M. W, J. Power Sources, 173: 277-290 (2007).
Google Scholar
[10]
B. Markicevic, A. Bazylak, N. Djilali, J. Power Sources, 171 (2): 706-717 (2007).
Google Scholar
[11]
P. K. Sinha , C. Y. Wang, Electrochimica Acta, 52(28): 7936-7945 (2007).
Google Scholar
[12]
P. K. Sinha , C. Y. Wang, Chemical Engineering Science, 63(4): 1081-1091 (2008).
Google Scholar
[13]
K. J. Lee, J. H. Kang, J. H. Nam, C. J. Kim, J. Power Sources, 195: 3508-3512 (2010).
Google Scholar
[14]
O. Chapuis, M. Prat, M. Quintard, E.C. Kane, O. Guillot, N. Mayer, J. Power Sources, 178: 258 (2008).
DOI: 10.1016/j.jpowsour.2007.12.011
Google Scholar
[15]
A. Bzaylak, V. Berejnov, B. Markicevic, D. Sinton, N. Djilali, Electrochimica Acta, 53: 7630 (2008).
DOI: 10.1016/j.electacta.2008.03.078
Google Scholar
[16]
L. Ceballos, M. Prat, J. Power Sources, 195: 825 (2010).
Google Scholar
[17]
K.J. Lee, J.H. Nam, C.J. Kim, J. Power Sources, 195: 130-141 (2010).
Google Scholar
[18]
J.T. Gostick, M.A. Ioannidis, M.D. Pritzker, M.W. Fowler, J. Electrochem. Soc., 157(4): B563-B571 (2010).
Google Scholar
[19]
R. Wu, X. Zhu, Q. Liao, H. Wang, Y. Ding, J. Li, D. Ye, Int. J. Hydrogen Energy, 35(14): 7588-7593 (2010).
Google Scholar
[20]
G. Luo, Y. Ji, C.Y. Wang, P. K. Sinha, Electrochimica Acta, 55(19): 5332-5341 (2010).
Google Scholar
[21]
Y. Ji, G. Luo, C.Y. Wang, J. Electrochem. Soc., 157(12): B1753-B1761 (2010).
Google Scholar
[22]
A. K. Gunstensen , D. H. Rothman, Phys. Rev. A, 43: 4320–4327 (1991).
Google Scholar
[23]
X. Shan , H. Chen, Phys. Rev. E , 47: 1815 (1993).
Google Scholar
[24]
X. W. Shan, G. Doolen, J. Statistical Physics, 81: 379-393 (1995).
Google Scholar
[25]
N. S. Martys, H. Chen, Phys. Rev. E 53: 743–750 (1996).
Google Scholar
[26]
M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett. 75: 830–833 (1995).
Google Scholar
[27]
M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, Phys. Rev. E 54, 5041–5052 (1996).
Google Scholar
[28]
D. J. Holdych, D. Rovas, J. G. Georgiadis, R. O. Buckius, Int. J. Modern Phys. C. 9(8): 1393-1404.
Google Scholar
[29]
P. Zhou, C.W. Wu, J. Power Sources, 195 : 1408–1415 (2010).
Google Scholar
[30]
P. P. Mukherjee, C. Y. Wang, Electrochimica Acta, 54(27): 6861-6875 (2009).
Google Scholar
[31]
P. P. Mukherjee. Ph D thesis, Pore-scale modeling and analysis of the polymer electrolyte Fuel Cell catalyst layer. The Pennsylvania State University, USA, 2007. Figure 1. TEPN of the composite MPL-GDL.
Google Scholar
[21]
Figure 2. Water saturation profile along the through-plane direction.
Google Scholar
[21]
Figure 3. Liquid water front with increasing capillary pressure through the initially air-saturated reconstructed CL microstructure from the primary drainage simulation.
Google Scholar
[30]
Figure 4. Liquid water front with increasing capillary pressure through the initially air-saturated reconstructed GDL microstructure from the primary drainage simulation.
Google Scholar