Mesoscopic Models of Two-Phase Transport in PEMFCs: A Review

Article Preview

Abstract:

Water management is one of the most critical and widely studied topics in what concerns proton exchange membrane fuel cell (PEMFC). Traditional macroscopic models of two-phase transport in PEMFCs generally assume “homogeneous” medium and are based on the concept of volumetric averaging, thus lumping all the detailed information of the structural morphology inside a PEMFC. Mesoscopic models have the potential to reveal the underlying pore-scale mechanism of two-phase transport in PEMFCs. This paper aims to review the sate-of-the-art and perspective of the PEMFC mesoscopic two-phase transport models, mainly the pore network (PN) model and the Lattice Boltzmann (LB) model. We will talk about what we are planning to do using the LB model as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1708-1713

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Jiao, X. G. Li, in Progress in Energy and Combustion Science, 37(3): 221-291 (2011).

Google Scholar

[2] Z. H. Wang, C. Y. Wang and K. S. Chen, J. Power Sources, 94 : 40-50 (2001).

Google Scholar

[3] U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc., 151: A399-A406 (2004).

Google Scholar

[4] Y. Wang , C. Y. Wang, J. Power Sources, 153: 130-135 (2006).

Google Scholar

[5] J. Nam , M. Kaviany, Int. J. Heat and Mass Transfer, 46: 4595–4611 (2003).

Google Scholar

[6] L. You, H. Liu, Int. J. Heat Mass Transfer, 45: 2277–2287(2002).

Google Scholar

[7] C. Y. Wang, Chem. Rev., 104: 4727-4766 (2004).

Google Scholar

[8] V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee, and C. Y. Wang, J. Electrochem. Soc., 154(4): B419 (2007).

Google Scholar

[9] J.T. Gostick, M.A. Ioannidis, M. W, J. Power Sources, 173: 277-290 (2007).

Google Scholar

[10] B. Markicevic, A. Bazylak, N. Djilali, J. Power Sources, 171 (2): 706-717 (2007).

Google Scholar

[11] P. K. Sinha , C. Y. Wang, Electrochimica Acta, 52(28): 7936-7945 (2007).

Google Scholar

[12] P. K. Sinha , C. Y. Wang, Chemical Engineering Science, 63(4): 1081-1091 (2008).

Google Scholar

[13] K. J. Lee, J. H. Kang, J. H. Nam, C. J. Kim, J. Power Sources, 195: 3508-3512 (2010).

Google Scholar

[14] O. Chapuis, M. Prat, M. Quintard, E.C. Kane, O. Guillot, N. Mayer, J. Power Sources, 178: 258 (2008).

DOI: 10.1016/j.jpowsour.2007.12.011

Google Scholar

[15] A. Bzaylak, V. Berejnov, B. Markicevic, D. Sinton, N. Djilali, Electrochimica Acta, 53: 7630 (2008).

DOI: 10.1016/j.electacta.2008.03.078

Google Scholar

[16] L. Ceballos, M. Prat, J. Power Sources, 195: 825 (2010).

Google Scholar

[17] K.J. Lee, J.H. Nam, C.J. Kim, J. Power Sources, 195: 130-141 (2010).

Google Scholar

[18] J.T. Gostick, M.A. Ioannidis, M.D. Pritzker, M.W. Fowler, J. Electrochem. Soc., 157(4): B563-B571 (2010).

Google Scholar

[19] R. Wu, X. Zhu, Q. Liao, H. Wang, Y. Ding, J. Li, D. Ye, Int. J. Hydrogen Energy, 35(14): 7588-7593 (2010).

Google Scholar

[20] G. Luo, Y. Ji, C.Y. Wang, P. K. Sinha, Electrochimica Acta, 55(19): 5332-5341 (2010).

Google Scholar

[21] Y. Ji, G. Luo, C.Y. Wang, J. Electrochem. Soc., 157(12): B1753-B1761 (2010).

Google Scholar

[22] A. K. Gunstensen , D. H. Rothman, Phys. Rev. A, 43: 4320–4327 (1991).

Google Scholar

[23] X. Shan , H. Chen, Phys. Rev. E , 47: 1815 (1993).

Google Scholar

[24] X. W. Shan, G. Doolen, J. Statistical Physics, 81: 379-393 (1995).

Google Scholar

[25] N. S. Martys, H. Chen, Phys. Rev. E 53: 743–750 (1996).

Google Scholar

[26] M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett. 75: 830–833 (1995).

Google Scholar

[27] M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, Phys. Rev. E 54, 5041–5052 (1996).

Google Scholar

[28] D. J. Holdych, D. Rovas, J. G. Georgiadis, R. O. Buckius, Int. J. Modern Phys. C. 9(8): 1393-1404.

Google Scholar

[29] P. Zhou, C.W. Wu, J. Power Sources, 195 : 1408–1415 (2010).

Google Scholar

[30] P. P. Mukherjee, C. Y. Wang, Electrochimica Acta, 54(27): 6861-6875 (2009).

Google Scholar

[31] P. P. Mukherjee. Ph D thesis, Pore-scale modeling and analysis of the polymer electrolyte Fuel Cell catalyst layer. The Pennsylvania State University, USA, 2007. Figure 1. TEPN of the composite MPL-GDL.

Google Scholar

[21] Figure 2. Water saturation profile along the through-plane direction.

Google Scholar

[21] Figure 3. Liquid water front with increasing capillary pressure through the initially air-saturated reconstructed CL microstructure from the primary drainage simulation.

Google Scholar

[30] Figure 4. Liquid water front with increasing capillary pressure through the initially air-saturated reconstructed GDL microstructure from the primary drainage simulation.

Google Scholar