Effects of Alloy Compositions on Amorphization and Crystallization of Al-Ni-Ce-C Powders by Mechanical Alloying

Article Preview

Abstract:

In the present work, Al-Ni-Ce-C amorphous powders with different compositions have been prepared by a high energy ball milling technique. The amorphization behaviors of the Al-Ni-Ce-C powders have been studied using X-ray diffraction and transmission electron microscopy. The results show that alloy compositions have a great influence on the amorphization behavior of the Al-Ni-Ce-C powders and the optimum composition is Al85Ni10Ce5+1 wt.% C for the formation of amorphous phase. The thermal stability of the as-milled powders has been investigated by differential scanning calorimetry. It has been found that the compositional effects on thermal stability are similar to those on the amorphization of Al-Ni-Ce-C. In addition, the more addition of carbon decreases both glass forming ability and thermal stability of the Al-Ni-Ce-C system under ball milling conditions. Furthermore, comparison has been carried out between Al85Ni10Ce5+1 wt.% C amorphous powders and Al85Ni10Ce5 glassy ribbons with respect to thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2109-2116

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue: Mater. Sci. Vol. 43 (1998), p.365.

Google Scholar

[2] M.A. Muñoz-Morris, S. Suriñach, L.K. Varga, M.D. Baro and D.G. Morris: Scr. Mater. Vol. 47(2002), p.31.

Google Scholar

[3] B.J. Yang, J.H. Yao, J. Zhang, H.W. Yang, J.Q. Wang and E. Ma: Scr. Mater. Vol. 61 (2009) p.423.

Google Scholar

[4] Z.H. Huang, J.F. Li, Q.L. Rao and Y.H. Zhou: Mater. Sci. Eng., A Vol. 489 (2008), p.380.

Google Scholar

[5] M. Gögebakan and O. Uzun: J. Mater. Process. Technol. Vol. 153–154 (2004), p.829.

Google Scholar

[6] Z.H. Huang, J.F. Li, Q.L. Rao and Y.H. Zhou: J. Non-Cryst. Solids Vol. 354 (2008), p.1671.

Google Scholar

[7] H.M. Chen, X.Y. Cheng, J. Zhang, Y.F. Ouyang, Y. Du, X.P. Zhong and X.M. Tao: J. Alloys Compd. Vol. 460 (2008), p.309.

Google Scholar

[8] Y. Zou, K. Kusabiraki and S. Saji: Mater. Res. Bull. Vol. 37 (2002), p.1307.

Google Scholar

[9] T. W. Wilson, H. Choo and W. D. Porter, J. Non-Cryst. Solids Vol. 352 (2006), p.4024.

Google Scholar

[10] C. Suryanarayana: Mater. Sci. Vol. 46 (2001), p.1.

Google Scholar

[11] G. Cacciamani and R. Ferro: Calphad Vol. 25 (2001), p.583.

Google Scholar

[12] A.W. Weeber, A.J.H. Wester, W.J. Haag and H. Bakker: Physica B Vol. 145 (1987), p.349.

Google Scholar

[13] N.Q. Wu, J.M. Wu, G.X. Wang and Z.Z. Li: J. Alloys Compd. Vol. 260 (1997), p.121.

Google Scholar

[14] Y. Du and N. Clavaguera : J. Alloys Compd. Vol. 237 (1996), p.20.

Google Scholar

[15] A. Inoue and A. Takeuchi: Mater. Trans. Vol. 46 (2005), p.2817.

Google Scholar

[16] A.L. Greer: Nature Vol. 366 (1993), p.303.

Google Scholar

[17] X.F. Bian and M.H. Sun: Mater. Lett. Vol. 57(2002), p.2460.

Google Scholar

[18] S.H. Wang and X.F. Bian: J. Alloys Compd. Vol. 453 (2008), p.127.

Google Scholar

[19] H. Ohtani, M. Yamano and M. Hasebe: Calphad Vol. 28 (2004), p.177.

Google Scholar

[20] C.J. Choi, H.U. Yang, B.K. Kim and J.H. Ahn: Mater. Sci. Forum Vol. 343-346 (2000), p.109.

Google Scholar

[21] S. Miura, Y. Terada, T. Suzuki and C.T. Liu: Intermetallics Vol. 8 (2000), p.151.

Google Scholar