Design of Solar Energy Photon-Thermal Conversion Thin Film System

Article Preview

Abstract:

A high-absorption of thin film system used for solar energy photon-thermal conversion is designed. Which is composed of four function parts with metals and dielectric materials. The result of design show that it has a very high absorption over 95% with wide working wavelength range from 400nm to 1000nm and incident angle from 0o to 60o.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5-8

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Behrman, Solar Energy(little, Brown & Company Limited, 1976).

Google Scholar

[2] Y.W. Wong and K. Sumathy. Solar thermal water pumping systems: a review. Renew Sustain Energ. Rev. 3, 1999(185).

Google Scholar

[3] Q. C. Zhang. Recent progress in high-temperature solar selective coating. Sol. Energ. Mat. Sol. C. 62, 63-74(2000).

Google Scholar

[4] Atul Sharma, C. R. Chen, V. V. S. Murty, Anant Shukla, Solar cooker with latent heat storage systems : A review, Renew Sustain Energ. Rev. 13, 1599(2009).

DOI: 10.1016/j.rser.2008.09.020

Google Scholar

[5] Todd P. Otanicar, Patrick E. Phelan, Jay S. Golden, Optical properties of liquids for direct absorption solar thermal energy systems. Sol. Energ, 83, 969(2009).

DOI: 10.1016/j.solener.2008.12.009

Google Scholar

[6] Alongkarn Chutinan, Nazir P. Kherani and Stefan Zukotynski. High-efficiency photonic crystal solar cell architecture. Optics Express, 17(11), 8871-8878(2009).

DOI: 10.1364/oe.17.008871

Google Scholar

[7] Yu. A. Akimov, W. S. Koh and K. Ostrikov. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Optical Express, 17(12), 10195-10205(2009).

DOI: 10.1364/oe.17.010195

Google Scholar

[8] Chenxi Lin and Michelle L. Povinelli. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Optical Express, 17(22), 19371-19381(2009).

DOI: 10.1364/oe.17.019371

Google Scholar

[9] N. P. Harder and P. Wurfel. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18(5), S151-S157(2003).

DOI: 10.1088/0268-1242/18/5/303

Google Scholar

[10] A. Narayanaswamy, J. Cybulksi and G. Chen. 1D metallo-dielectric photonic crystals as selective emitters for thermophotovoltaic applications. Thermophotovoltaic generation of electricity. Sixth Conference, CP738, 215(2004).

DOI: 10.1063/1.1841897

Google Scholar

[11] Y. B. Chen and Z. M. Chang. Design of tungsten complex gratings for thermophotovoltaic radiators. Opt. Commun. 269(2), 411-417(2007).

DOI: 10.1016/j.optcom.2006.08.040

Google Scholar

[12] H. Sai and H. Yugami. Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Appl. Phys. Lett. 85(16), 3399(2004).

DOI: 10.1063/1.1807031

Google Scholar

[13] I. T. Ritchie and B. Window. Applications of thin graded-index films to solar absorbers. Appl. Optics 16, 1438-1443(1977).

DOI: 10.1364/ao.16.001438

Google Scholar

[14] Shuxi Zhao, Carl-Gustaf Ribbing, Ewa Wackelgrad, New method to optimize a solar absorber graded film profile, Sol. Energ. 78, 125 (2005).

DOI: 10.1016/j.solener.2004.06.010

Google Scholar

[15] Xiao-Fan Li, Yue-Rui Chen, Jian Miao, Peng Zhou, Yu-Xiang Zheng and Liang-Yao Chen. High solar absorption of a multilayered thin film structure, Opt. Express, 4, 1907(2007).

DOI: 10.1364/oe.15.001907

Google Scholar