[1]
E. G. Nawy, Fundamentals of High Strength High Performance Concrete. London, UK: Longman Group Limited, (1996).
Google Scholar
[2]
A. Oner, S. Akyuz, and R. Yildiz, An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete, Cement and Concrete Research vol. Vol. 35, p.1165– 1171, (2005).
DOI: 10.1016/j.cemconres.2004.09.031
Google Scholar
[3]
V. M. Malhotra and P. K. Mehta, High Performance, High-Volume Fly Ash Concrete: materials, mixture proportioning, properties, construction practice, and case histories. , 2nd ed. Ottawa, Canada: Suplementary Cementing Materials for Sustainable Development Inc., Ottawa Canada, (2005).
Google Scholar
[4]
A. Bilodeau and V. M. Malhotra, High-Volume Fly Ash System: Concrete Solution for Sustainable Development, ACI MaterialsJournal, vol. January-February 2000, pp.41-50, (2000).
DOI: 10.14359/804
Google Scholar
[5]
C. D. Atis, High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage, ASCE JOURNAL OF MATERIALS IN CIVIL ENGINEERING vol. March-April, pp.153-156, (2003).
DOI: 10.1061/(asce)0899-1561(2003)15:2(153)
Google Scholar
[6]
M. A. Elsageer, S. G. Millard, and S. J. Barnett, Strength development of concrete containing coal fly ash under different curing temperature conditions , presented at the World of Coal Ash (WOCA) Conference, Lexington, KY, USA, (2009).
Google Scholar
[7]
Mira P., V. G. Papadakis, and S. Tsimas, Effect of lime putty addition on structural and durability properties of concrete, Cement and concrete research, vol. Vol. 32, pp.683-689, (2002).
DOI: 10.1016/s0008-8846(01)00744-x
Google Scholar
[8]
ASTM C109/ C109M - 02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ed. Philadelphia, United States: Annual Book of ASTM Standards (2002).
DOI: 10.1520/c0109_c0109m-20
Google Scholar
[9]
SNI 03-2834-2000, Tata Cara Pembuatan Rencana Campuran Beton Normal, vol. SNI 03-2834-2000, ed. Bandung, 2000, pp.1-34.
DOI: 10.29103/tj.v6i1.67
Google Scholar
[10]
D. J. H. Burgoyne and P. LLP. (--, 7 August 2014). Self-Heating Coal Cargoes - Indonesia. Available: http: /www. burgoynes. com/files/Self-Heating%20Cole%20Cargoes%20-%20Indonesia. pdf.
Google Scholar
[11]
SNI 03-1974-1990, Metode Pengujian Kuat Tekan Beton, vol. SNI 03-1974-1990, ed. Bandung: Badan Standarisasi Nasional (BSN), (1990).
DOI: 10.33366/jast.v2i1.945
Google Scholar
[12]
B. F. Ryan, T. A. R. Jr, and B. L. Joiner, Minitab R 15, ed: Minitab Inc., (2007).
Google Scholar
[13]
P. K. Mehta, HIGH-PERFORMANCE, HIGH-VOLUME FLY ASH CONCRETE FOR SUSTAINABLE DEVELOPMENT, presented at the International Workshop on Sustainable Development and Concrete Technology, Beijing, (2004).
Google Scholar
[14]
P. K. Mehta, Influence of fly ash characteristics on the strength of portland-fly ash mixtures, CEMENT and CONCRETE RESEARCH, vol. Vol. 15, pp. pp.669-674, (1985).
DOI: 10.1016/0008-8846(85)90067-5
Google Scholar
[15]
T. R. Naik, S. Singh, and B. Ramme, Mechanical Properties and Durability of Concrete Made with Blended Fly Ash, ACI Materials Journal, vol. July-August, pp.454-460, (1998).
DOI: 10.14359/388
Google Scholar
[16]
M. Solikin, S. Setunge, and I. Patnaikuni, Experimental Design Analysis of Ultra Fine Fly Ash, Lime Water, and Basalt Fibre in Mix Proportion of High Volume Fly Ash Concrete, Pertanika Journal Science & Technology, vol. Vol. 21, pp.589-600, (2013).
DOI: 10.3850/978-981-08-7920-4_s3-m027-cd
Google Scholar
[17]
M. Solikin, High Performance Concrete with High Volume Ultra Fine Fly Ash Reinforced with Basalt Fibre, Doctor of Philosophy, School of Civil, Chemical and Environment Engineering, RMIT University, Melbourne, (2012).
Google Scholar