Identification of Methyl Ester Content from Waste Cooking Oil Using Gas Chromatographic Method

Article Preview

Abstract:

Waste cooking oil has always been an environment problem in food factories and one method of effect disposing this oil without effecting the environment is to convert it to fatty acid methyl ester (FAME) using small scale pilot plant. The conversion of waste cooking oil with sodium hydroxide as a catalyst in conversional process at 22kHz speed. The reaction of time, molar ratio, speed, catalyst and amount of catalyst will be effect in FAME quality. The quality of biodiesel define is total ester content using gas chromatography. Gas chromatography analysis is a one of technique for identification and quantitation of compounds in a biodiesel sample. From biodiesel sample can identification of contaminants and fatty acid methyl ester. In this research biodiesel sample were analyses using a gas chromatography-flame ionization detector ( Perkin Elmer GC Model Clarus 500) equipped with a DB-5 HT capillary column ( 0.53mm x 5 m) J&W Scientific. The analytic conditions for ester content were as follow by: column temperature used 2100C, temperature flame ionization detector (FID) of 2500C, pressure of 80kPa, flow carrier gas of 1ml/min, temperature injector of 2500C, split flow rate of 50ml/min, time for analysis 20 minute and volume injected of 1 μl. The ester content (C), expresses as a mass fraction in present using formula (EN 14103, 2003a) calculation. Conversion of triglyceride (TG) to FAME using conversional process obtained 96.54 % w.t with methanol to oil molar ratio 6:1, 1%w.t acid sulphuric and 1% w.t sodium hydroxide catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-300

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. R. Chapman's, Practical Organic Mass Spectrometry: A Guide for Chemical and Biochemical Analysis, 2nd Edition, A Wiley-Interscience publication.

Google Scholar

[2] Alan J. Handley and Edward R. Adlard, Gas Chromatographic Techniques and Applications, in: Mark Powell, detectors for compound identification, Sheffield Academic Press Ltd., England, 2001, pp.140-142.

Google Scholar

[3] Bryan R. Moser: Biodiesel production, properties, and feedstocks, The Society for In Vitro Biology (2009).

Google Scholar