Effect of Cr to Fe on the Solid Solubility, Lattice Parameter and Strain of Fe80Cr20 Alloy Powder

Article Preview

Abstract:

-Fe-Cr phase was investigated using formula Fe80Cr20. Ball milling process and ultrasonic technique is successfully done to develop solid solubility and improve homogenous, respectively. However, the effect of the Cr to Fe powder is not complete investigated using combination of its process. Ball milling is conducted by milling time of 60 hours and ultrasonic technique were carried out at ultrasonic time of 3 h, 3.5 h, 4 h, 4.5 h and 5 h. From the strain effect analysis is obtained that the strain increased with crystallite size decreased and broad peaks due to the micro strain that is obtained from the increasing d-spacing. The solid solubility and lattice parameter of the material relatively increased from the untreated sample to treated samples with the highest solid solubility of 62.1% and highest lattice parameter of 3.091 nm which is located at the milled and UB 4.5 hours. It is caused the temperature increased that effect to the higher diffusion of the atom. Therefore, the combination treatment is highest promote to improve the properties of the metallic materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-284

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Numakura. Graduate School of Engineering, Osaka Prefecture University, (2005).

Google Scholar

[2] M. D. Stanisław and Jakub Cieslak. AGH University of Science and Technology, 30-059 Kraków, Poland (2011).

Google Scholar

[3] D. S. Khaerudini. University Tun Hussein Onn Malaysia, Malaysia, 2011, Master Thesis.

Google Scholar

[4] H. Saryanto. UniversitiTun Hussein Onn Malaysia, Malaysia, 2011, Master Theses.

Google Scholar

[5] ASM Handbook Vol. 3. Materials Park, OH: ASM International (1992).

Google Scholar

[6] B.F.O. Costa, G. Le Caer, and N. Ayres de Campos. phys. stat. sol. Vol. 183, No. 2(2001), p.235–250.

Google Scholar

[7] S. Prithu, K. Biswas, and A. K. Mondal. ScriptaMaterialia 61 (2009) 600–603.

Google Scholar

[8] W.H. Qi, and M.P. Wang. Journal of Nanoparticle Research (2005) 7: 51–57.

Google Scholar

[9] L. B. Hong, and B. Fultz. Actamater , Vol. 46, No. 8(1998), pp.2937-2946.

Google Scholar

[10] S. Dileep. University of New Orleans, 2003, Theses and Dissertations.

Google Scholar

[11] L. Lyubenova, T. Spassov, M. Spassova. Bulgarian Chemical Communications, Vol. 43, No. 2 (2011), p.288–292.

Google Scholar

[12] C. Suryanarayana. ISBN: 0-8247-4103-X, Publisher: Marcel Dekker, Cimarron Road, Monticello, New York 12701, 2003, U.S. A.

Google Scholar

[13] A. Cimino, P. Porta and M. Valig. Journal of the American Ceramic Society, Vol. 49, Issue 3 (2006), pages 152–156.

Google Scholar

[14] C. T. Michael, H. Kurokawa, C. P. Jacobson, L. C. De Joghe, and S. J. Visco. Jounal of power sources, Vol. 160 (2006), pp.130-138.

Google Scholar

[15] A.D. S. K. Das, K. Nakayashiki, B. Rounsaville, V. Meemongkolkiat, and A. Rohatgi. J. Electrochem. Soc. Vol. 157(6) (2010), pp. H684-H687.

DOI: 10.1149/1.3392364

Google Scholar

[16] K.S. Suslick. The Yearbook of Science and The Future 1994, Encyclopedia Britannica. Chicago, (1994).

Google Scholar

[17] K. S. Suslick, Gareth J. Price. Annu. Rev. Mater. Sci. 29 (1999), p.295–326.

Google Scholar

[18] A. G. J. Juan. Physics Procedia, 3 (2010), p.35–47.

Google Scholar

[19] T. M. Thomas, Qingyou Han. University of Tennessee, (2006).

Google Scholar

[20] N. Krisztian, Daniel E. Morse. Elsivier, Nano Today, 5 (2010), pp.99-105.

Google Scholar

[21] D. C. William. Seven Editions. The University of Utah, (2006).

Google Scholar

[22] A. A. Baig, J. L. Fox, R. A. Young, Z. Wang, J. Hsu, W. I. Higuchi, A. Chhettry, H. Zhuang, M. Otsuka. Calcif Tissue Int, Vol. 64 (1999), p.437–449.

DOI: 10.1007/pl00005826

Google Scholar

[23] V.A. LubardaMechanics of Materials 35 (2003) 53–68.

Google Scholar

[24] L. K. Hyung, J. S. Park, Y. W. Chang. Materials Science and Engineering A 540 (2012) 198– 206.

Google Scholar

[25] R. D. Tilley, J. Ren. Small, 3 (2007), pp.1508-1512.

Google Scholar

[26] V. Ponomareva, A. V. Ruban, O. Yu. Vekilova, S. I. Simak, and I. A. Abrikosov. Physical Review B 84(2011), 094422.

Google Scholar

[27] C. Suryanarayana. Progress in Materials Science. Vol. 46 (2001), pp.1-184.

Google Scholar

[28] C. Suryanarayana. Mechanical alloying and milling. New York 2004, Marcel dekker.

Google Scholar