[1]
K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, Biodegradable composites based on lignocellulosic fibers-An overview, Progress in Polymer Science, vol. 34, pp.982-1021, (2009).
DOI: 10.1016/j.progpolymsci.2008.12.002
Google Scholar
[2]
M. Y. Hashim, M. N. Roslan, A. M. Amin, A. M. A. Zaidi, and S. Ariffin, Mercerization Treatment Parameter Effect on Natural Fiber Reinforced Polymer Matrix Composite: A Brief Review, World Academy of Science, Engineering and Technology, vol. 68, pp.1638-1644, (2012).
Google Scholar
[3]
O. Shinji, Mechanical properties of kenaf fibers and kenaf/PLA composites, Mechanics of Materials, vol. 40, pp.446-452, 2008 (2008).
DOI: 10.1016/j.mechmat.2007.10.006
Google Scholar
[4]
M. John and R. Anandjiwala, Recent developments in chemical modification and characterization of natural fiber reinforced composites, Polymer composites, vol. 29, pp.187-207, (2008).
DOI: 10.1002/pc.20461
Google Scholar
[5]
M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Composites Part B: Engineering, vol. 43, pp.2883-2892, (2012).
DOI: 10.1016/j.compositesb.2012.04.053
Google Scholar
[6]
R. Mahjoub, J. M. Yatim, A. R. Mohd Sam, and S. H. Hashemi, Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications, Construction and Building Materials, vol. 55, pp.103-113, (2014).
DOI: 10.1016/j.conbuildmat.2014.01.036
Google Scholar
[7]
M. Y. Hashim, R. Mohd Nazrul, S. Ariffin, and N. Ahmad, Mercerization Treatment Conditions Effects on Kenaf Fiber Bundles Mean Diameter Variability, Applied Mechanics and Materials, vol. 315, pp.670-674, (2013).
DOI: 10.4028/www.scientific.net/amm.315.670
Google Scholar
[8]
H. Gu, Tensile behaviours of the coir fibre and related composites after NaOH treatment, Materials & Design, vol. 30, pp.3931-3934, (2009).
DOI: 10.1016/j.matdes.2009.01.035
Google Scholar
[9]
K. Mylsamy and I. Rajendran, Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites, Materials & Design, vol. 32, pp.4629-4640, (2011).
DOI: 10.1016/j.matdes.2011.04.029
Google Scholar
[10]
B. F. Yousif, A. Shalwan, C. W. Chin, and K. C. Ming, Flexural properties of treated and untreated kenaf/epoxy composites, Materials & Design, vol. 40, pp.378-385, (2012).
DOI: 10.1016/j.matdes.2012.04.017
Google Scholar
[11]
A. Roy, S. Chakraborty, S. P. Kundu, R. K. Basak, S. Basu Majumder, and B. Adhikari, Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model, Bioresource Technology, vol. 107, pp.222-228, (2012).
DOI: 10.1016/j.biortech.2011.11.073
Google Scholar
[12]
L. Boopathi, P. S. Sampath, and K. Mylsamy, Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber, Composites Part B: Engineering, vol. 43, pp.3044-3052, (2012).
DOI: 10.1016/j.compositesb.2012.05.002
Google Scholar
[13]
K. Obi Reddy, C. Uma Maheswari, M. Shukla, J. I. Song, and A. Varada Rajulu, Tensile and structural characterization of alkali treated Borassus fruit fine fibers, Composites Part B: Engineering, vol. 44, pp.433-438, (2013).
DOI: 10.1016/j.compositesb.2012.04.075
Google Scholar
[14]
Y. Xue, Y. Du, S. Elder, K. Wang, and J. Zhang, Temperature and loading rate effects on tensile properties of kenaf bast fiber bundles and composites, Composites Part B: Engineering, vol. 40, pp.189-196, (2009).
DOI: 10.1016/j.compositesb.2008.11.009
Google Scholar
[15]
D. Bachtiar, S. M. Sapuan, and M. M. Hamdan, The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites, Materials & Design, vol. 29, pp.1285-1290, (2008).
DOI: 10.1016/j.matdes.2007.09.006
Google Scholar