Theoretical Study of the Electronic Structures of Na-Doped ZnO

Article Preview

Abstract:

The first-principles with pseudopotentials method based on the density functional theory was applied to calculate the formation energy of impurities and the electronic structure of ZnO doped with Na. In Na-doped ZnO, NaO is the most unstable than the other cases. Simultaneously, NaZn is more stable than Nai according to that NaZn have smaller formation energy. Furthermore, the electronic structure of Na-doped ZnO indicates that that NaZn behaves as an acceptor, while Nai behaves as a donor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-127

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. C. Look, D. C. Reynolds, J. R. Sizelove, et al. Solid State Commun. Vol. 105 (1998), p.399.

Google Scholar

[2] Janotti A, Van de Walle Chris G: Journal of Crystal Growth Vol. 287 (2006), p.58–65.

Google Scholar

[3] J.G. Lu, Y.Z. Zhang, Z. Z. Ye, et al. Mater. Lett. Vol. 57 (2003), p.3311.

Google Scholar

[4] J. G. Lu, Z. Z. Ye, F. Zhuge, et al. Appl. Phys. Lett. Vol. 85 (2004), p.3134.

Google Scholar

[5] Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga: Appl. Phys. Lett. Vol. 88 (2006), p.172103.

Google Scholar

[6] Z. G. Yu, P. Wu, and H. Gong: Appl. Phys. Lett. Vol. 88 (2006), p.132114.

Google Scholar

[7] D. C. Look, G. Renlund, R. H. Burgener II, et al. Appl. Phys. Lett. Vol. 85 ( 2004 ), p.5269.

Google Scholar

[8] F. X. Xiu, Z. Yang, L. J. Mandalapu, et al. Appl. Phys. Lett. Vol. 87 (2005), p.252102.

Google Scholar

[9] C. H. Park, S. B. Zhang, and S.H. Wei: Phys. Rev. B Vol. 66(2002), p.073202.

Google Scholar

[10] O. F. Schirmer: J. Phys. Chem. Solids Vol. 29(1968), p.1407.

Google Scholar

[11] P. H. Kasai: Phys. Rev. Vol. 130(1963), p.989.

Google Scholar

[12] D. Block, A. Hervé, and R. T. Cox: Phys. Rev. B Vol. 25(1982), p.6049.

Google Scholar

[13] B. K. Meyer, H. Alves, D. M. Hofmann, et al. Phys. Status Solidi B Vol. 241 (2004), p.231.

Google Scholar

[14] E. Tomzig and H. Helbig: J. Lumin. Vol. 14(1976), p.403.

Google Scholar

[15] M. G. Wardle, J. P. Goss, and P. R. Briddon: Phys. Rev. B Vol. 71(2005), p.155205.

Google Scholar

[16] J. J. Lander, J. Phys. Chem. Solids 15 (1960), p.324.

Google Scholar

[17] J. Schneider and O. Schirmer, Z. Naturforsch. B 18a(1963), p.20.

Google Scholar

[18] D. Zwingel and F. Gärtner, Solid State Commun. 14(1974), p.45.

Google Scholar

[19] D. Zwingel, J. Lumin. 5(1972), p.385.

Google Scholar

[20] R. T. Cox, D. Block, A. Herve, R. Picard, and C. Santier, Solid State Commun. 25(1978), p.77.

Google Scholar

[21] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

Google Scholar

[22] H. Su, J. Dai, Y. Pu, et al. Chinese Journal of Semiconductors, 27(7), 1221(2006).

Google Scholar

[23] X Y Cui, J E Medvedeva, B Delley. Phys. Rev. Lett., 95, 256404(2005).

Google Scholar