[1]
L. Erbe, H. Freedman, X. Liu, J. Wu. Comparison principles for impulsive parabolic equations with applications to models of single species growth. J. Austral. Math. Soc. Ser. B 32 (1991) : 382-400.
DOI: 10.1017/s033427000000850x
Google Scholar
[2]
S. Rogovchenenko. Periodic solutions of hyperbolic systems with impulse effect. Academy of Sciences of Ukraine, Institute of Mathematics, preprint 88. 8, Kiev (1988) (in Russian).
Google Scholar
[3]
D. Bainov, S. Kostadinov, G. Petrov. Asymptotic behaviour of the solutions of Schrodinger equations with impulse effect in Banach space. Communication of Joint Institute for Nuclear Research, Dubna, E2-92-274, (1992).
Google Scholar
[4]
Drumi D. Bainov, Zdzislaw Kamont, Emil Minchev. Comparison principles for impulsive hyperbolic equations of first order. J. Comp. Appl. Math. 60 (1995): 379-388.
DOI: 10.1016/0377-0427(94)00046-4
Google Scholar
[5]
Said Abbas, Mouffak Benchohra. Upper and lower solutions method for impulsive partial hyperbolic differential equations with fractional order. Nonlinear Analysis: Hybrid Systems 4 (2010): 406-413.
DOI: 10.1016/j.nahs.2009.10.004
Google Scholar
[6]
Wenliang Gao, Jinghua Wang. Estimates of solutions of impulsive parabolic equations under Neumann boundary condition. J. Math. Anal. Appl. 283 (2003): 478-490.
DOI: 10.1016/s0022-247x(03)00275-0
Google Scholar
[7]
Lianhua He, Anping Liu. Existence and uniqueness of solutions for nonlinear impulsive partial differential equations with delay. Nonlinear Analysis: Real World Applications 11 (2010): 952- 958.
DOI: 10.1016/j.nonrwa.2009.01.034
Google Scholar
[8]
E. Hernandez, M. Pierri, G. Goncalves. Existence Results for an Impulsive Abstract Partial Differential Equation with State-Dependent Delay. Comp. Math. Appl. 52 (2006): 411-420.
DOI: 10.1016/j.camwa.2006.03.022
Google Scholar
[9]
Runping Ye. Existence of solutions for impulsive partial neutral functional differential equation with infinite delay. Nonlinear Analysis 73 (2010): 155-162.
DOI: 10.1016/j.na.2010.03.008
Google Scholar