[1]
Giannessi F. Theorems of Alternative, Quadratic Programs, and Complementarity Problems. Variational Inequalities and Complementarity Problems, Edited by Cottle R W, Giannessi F. Lion J L. New York: John Wiley and Sons, 151-186, (1980).
DOI: 10.1002/zamm.19810610316
Google Scholar
[2]
S Chang, B S Lee, Y Q Chen . Variational Inequalities for Monotone Operators in Non- reflexive Banach Space[J]. Appl Math Lett, 8(6): 29-34, (1995).
Google Scholar
[3]
G Y Chen. Existence of Solutions for a Vector Variational Inequality: An Extension of the Hartman-Stampacchia Theorem. J. Optimization Theory Appl., 74: 445-456, (1992).
DOI: 10.1007/bf00940320
Google Scholar
[4]
N J Huang, Y P Fang. On Vector Variational Inequalities in Reflexive Banach Space. J. Global Optim. 32(4): 495-505, (2005).
DOI: 10.1007/s10898-003-2686-z
Google Scholar
[5]
B S Lee, G M Lee. Variational Inequalities for (η, θ)-pseudo-monotone Operators in Non- reflexive Banach Space. Appl Math Lett, 12(5): 13-17, (1999).
Google Scholar
[6]
S J Yu, J C Yao. On Vector Variational Inequalities. J. Optim Theory Appl, 89 (3): 749-769, (1996).
DOI: 10.1007/bf02275358
Google Scholar
[7]
Barbagallo A, Cojocaru M G. Continuity of Solutions for Parametric Variational Inequalities in Banach Space. J. Math Anal Appl., 351(2): 707-720, (2009).
DOI: 10.1016/j.jmaa.2008.10.052
Google Scholar
[8]
Cheng Y U, Zhu D L. Global Stability Results for the Weak Vector Variational Inequality. J. Global Optim, 32(4): 543-550, (2005).
DOI: 10.1007/s10898-004-2692-9
Google Scholar
[9]
X H Gong, K Kimura, J C Yao. Sensitivity Analysis of Strong Vector Equilibrium Problems.J. Nonlinear Convex Anal., 9: 83-94, (2008).
Google Scholar
[10]
P Q Khanh, L M Luu. Lower Semicontinuity and Upper Semicontinuity of the Solution Sets and Approximate Solution Sets of Parametric Multivalued Quasivariational Inequalities [J]. J Optim Theory Appl, 133(3): 329-339, (2007).
DOI: 10.1007/s10957-007-9190-4
Google Scholar
[11]
S J Li, C R Chen. Stability of Weak Vector Variational Inequality [J]. Nonlineaaysis Theory, Methods & Applications, 70(4): 1528-1535, (2009).
DOI: 10.1016/j.na.2008.02.032
Google Scholar
[12]
Z M Fang, Y Zhang. The stability of solution to Set-valued weak vector variational inequality. Journal of Southwest University (Natural Science Edition), 35, (2013).
Google Scholar
[13]
H Y Yin, C X Xu. General Multi-value vector variational inequality problem [J]. Journal of Applied Mathematics, 24: 284-290, (2001).
Google Scholar
[14]
J P Aubin, I Ekeland. Applied Nonlinear Analysis, Pure and Applied Mathematics [M]. New York: Wiley, (1984).
Google Scholar