The Stability of Solution Set to η-Set-Valued Weak Vector Variational Inequality Problem

Article Preview

Abstract:

In this paper, we discuss the upper semi-continuity of the solution to parameter η-Set-valued weak vector variational inequality problem. We show that the operator of parameter η-Set-valued weak vector variational inequality is not continuous, but it satisfies ν-semicontinuous and η-weak C pseudo-monotone. Our results generalize the previous results in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1134-1137

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Giannessi F. Theorems of Alternative, Quadratic Programs, and Complementarity Problems. Variational Inequalities and Complementarity Problems, Edited by Cottle R W, Giannessi F. Lion J L. New York: John Wiley and Sons, 151-186, (1980).

DOI: 10.1002/zamm.19810610316

Google Scholar

[2] S Chang, B S Lee, Y Q Chen . Variational Inequalities for Monotone Operators in Non- reflexive Banach Space[J]. Appl Math Lett, 8(6): 29-34, (1995).

Google Scholar

[3] G Y Chen. Existence of Solutions for a Vector Variational Inequality: An Extension of the Hartman-Stampacchia Theorem. J. Optimization Theory Appl., 74: 445-456, (1992).

DOI: 10.1007/bf00940320

Google Scholar

[4] N J Huang, Y P Fang. On Vector Variational Inequalities in Reflexive Banach Space. J. Global Optim. 32(4): 495-505, (2005).

DOI: 10.1007/s10898-003-2686-z

Google Scholar

[5] B S Lee, G M Lee. Variational Inequalities for (η, θ)-pseudo-monotone Operators in Non- reflexive Banach Space. Appl Math Lett, 12(5): 13-17, (1999).

Google Scholar

[6] S J Yu, J C Yao. On Vector Variational Inequalities. J. Optim Theory Appl, 89 (3): 749-769, (1996).

DOI: 10.1007/bf02275358

Google Scholar

[7] Barbagallo A, Cojocaru M G. Continuity of Solutions for Parametric Variational Inequalities in Banach Space. J. Math Anal Appl., 351(2): 707-720, (2009).

DOI: 10.1016/j.jmaa.2008.10.052

Google Scholar

[8] Cheng Y U, Zhu D L. Global Stability Results for the Weak Vector Variational Inequality. J. Global Optim, 32(4): 543-550, (2005).

DOI: 10.1007/s10898-004-2692-9

Google Scholar

[9] X H Gong, K Kimura, J C Yao. Sensitivity Analysis of Strong Vector Equilibrium Problems.J. Nonlinear Convex Anal., 9: 83-94, (2008).

Google Scholar

[10] P Q Khanh, L M Luu. Lower Semicontinuity and Upper Semicontinuity of the Solution Sets and Approximate Solution Sets of Parametric Multivalued Quasivariational Inequalities [J]. J Optim Theory Appl, 133(3): 329-339, (2007).

DOI: 10.1007/s10957-007-9190-4

Google Scholar

[11] S J Li, C R Chen. Stability of Weak Vector Variational Inequality [J]. Nonlineaaysis Theory, Methods & Applications, 70(4): 1528-1535, (2009).

DOI: 10.1016/j.na.2008.02.032

Google Scholar

[12] Z M Fang, Y Zhang. The stability of solution to Set-valued weak vector variational inequality. Journal of Southwest University (Natural Science Edition), 35, (2013).

Google Scholar

[13] H Y Yin, C X Xu. General Multi-value vector variational inequality problem [J]. Journal of Applied Mathematics, 24: 284-290, (2001).

Google Scholar

[14] J P Aubin, I Ekeland. Applied Nonlinear Analysis, Pure and Applied Mathematics [M]. New York: Wiley, (1984).

Google Scholar