[1]
A.A. Zarifian, P.G. Kolpahchyan, V. Kh. Pshikhopov, M. Yu. Medvedev, N.V. Grebennikov, V.V. Zak. Evaluation of electric traction's energy efficiency by computer simulation, 2013 IMACS World Congress. 26-28, August, 2013. Barcelona.
Google Scholar
[2]
Pshikhopov V., Medvedev M., Kostjukov V., Fedorenko R., Gurenko B., Krukhmalev V. Airship autopilot design. SAE Technical Papers. October 18-21, 2011. doi: 10. 4271/2011-01-2736.
DOI: 10.4271/2011-01-2736
Google Scholar
[3]
Pshikhopov V. Kh., Medvedev M. Y., and Gurenko B. V. Homing and Docking Autopilot Design for Autonomous Underwater Vehicle. Applied Mechanics and Materials Vols. 490-491 (2014).
DOI: 10.4028/www.scientific.net/amm.490-491.700
Google Scholar
[4]
Medvedev M. Y., Pshikhopov V. Kh., Robust control of nonlinear dynamic systems. Proc. of 2010 IEEE Latin-American Conference on Communications. September 14 – 17, 2010, Bogota, Colombia. ISBN: 978-1-4244-7172-0.
Google Scholar
[5]
Hill R.J. Electric railway traction. Traction drives with three–phase induction motors. Power Engineeing Journal, 1994. - Vol. 3. Pp. 143-152.
DOI: 10.1049/pe:19940311
Google Scholar
[6]
Kalker J.J. Rolling contact phenomena: linear elasticity. Reports of the Department of applied mathematical analysis. Delft, (2000).
Google Scholar
[7]
Rastrigin L. A. Systems of the extreme control. Мoscow, Nauka, (1974).
Google Scholar
[8]
Pshikhopov, V. Kh., Krukhmalev, V.A., Medvedev, M. Yu., Fedorenko, R.V., Kopylov, S.A., Budko, A. Yu., Chufistov, V.M. Adaptive control system design for robotic aircrafts. Proceedings – 2013 IEEE Latin American Robotics Symposium, LARS 2013 PP. 67 – 70. doi: 10. 1109/LARS. 2013. 59.
DOI: 10.1109/lars.2013.59
Google Scholar
[9]
Pshikhopov, V. Kh., Medvedev, M. Yu., Gaiduk, A.R., Gurenko, B.V. Control system design for autonomous underwater vehicle. Proceedings – 2013 IEEE Latin American Robotics Symposium, LARS 2013 PP. 77 – 82. doi: 10. 1109/LARS. 2013. 61.
DOI: 10.1109/lars.2013.61
Google Scholar
[10]
Pshikhopov, V., Medvedev, M., Gaiduk, A., Neydorf, R. , Belyaev, V., Fedorenko, R., Krukhmalev, V. Mathematical model of robot on base of airship. 2013 Proceedings of the IEEE Conference on Decision and Control, Pp. 959-964.
DOI: 10.1109/cdc.2013.6760006
Google Scholar
[11]
Pshikhopov, V. Kh., Medvedev, M., Gaiduk, A., Belyaev, V., Fedorenko, R., Krukhmalev, V. Position-trajectory control system for robot on base of airship. 2013 Proceedings of the IEEE Conference on Decision and Control, Pp. 3590-3595.
DOI: 10.1109/cdc.2013.6760435
Google Scholar
[12]
Pshikhopov, V., Krukhmalev, V., Medvedev, M., Neydorf, R. Estimation of energy potential for control of feeder of novel cruiser/feeder MAAT system, 2012, SAE Technical Papers, Vol 5.
DOI: 10.4271/2012-01-2099
Google Scholar
[13]
Pshikhopov, V., Medvedev, M., Neydorf, R., Krukhmalev, V., Kostjukov, V., Gaiduk, A., Voloshin, V. Impact of the feeder aerodynamics characteristics on the power of control actions in steady and transient regimes. SAE 2012 Aerospace Electronics and Avionics Systems Conference, 2012, Vol. 5.
DOI: 10.4271/2012-01-2112
Google Scholar
[14]
Pshikhopov, V., Medvedev, M. Block design of robust control systems by direct Lyapunov method. 18th IFAC World Congress, Volume 18, Issue PART 1, 2011, Pages 10875-10880.
DOI: 10.3182/20110828-6-it-1002.00006
Google Scholar