Synthesis and Preparation of Desulfurization Concerned Naphthenic Acid Type Ionic Liquid

Article Preview

Abstract:

This paper describes the types and characteristics of ionic liquids, synthesis and application of ionic liquids in chemical and environmental applications, and naphthenic acid corrosion problems and research on ionic liquids are organically combined together, using properties, good stability and easy separating from crude oil, of ionic liquid generated by imidazole and naphthenic acid, exploring the ionic liquid deacidification process conditions and acid removal effect. The naphthenic acid and imidazole react in acetone solvent, synthesis a series of ionic liquids in different reaction ratio, reaction temperature, reaction time and stirring speed conditions,makesome physical measurements and calculation of the yield of these ionic liquids and. The results show that, in naphthenic acid and imidazole molar ratio of 1:1, reaction temperature 70°C, reaction time 7h, stirring speed 400R / min, stand half hour after reaction, the yield of naphthenic acid type ionic liquid is maximum, namely, the deacidification effect is best. At the same time measured in the ionic liquid density is 1.179g / mL, and pH is 5.8. Obtained optimum synthesis condition of naphthenic acid type ionic liquid, greatly improving the deacidification rate of high acid crude oil, more importantly, the method does not cause any pollution to the environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-228

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Teng: Journal of Huaiyin Institute of Technology Vol. 18 (2009), p.77—80.

Google Scholar

[2] Y. Q. Hu, Y. B. Liu, S. Cai: Petroleum Processing and Petrochemicals Vol. 41 (2010), p.34—38.

Google Scholar

[3] S. P. Yuan, W. Shi, B. R. Li: J Phys Chem A Vol. 109 (2005), p.2594—260l.

Google Scholar

[4] X. Q. Fu, Z. Dai, S. Tian: Energy& Fuels Vol. 22 (2008), p.1923—(1929).

Google Scholar

[5] X. Y. Zhu, S. B. Tian: Petroleum and chemical corrosion and protection Vol. 22 (2005), p.7—l0.

Google Scholar

[6] X. Q. Wang, X. Q. Fu, S. B. Tian: Petroleum and Petrochemical Today Vol. 14 (2006), p.7—13.

Google Scholar

[7] Y. Z. Huang, J. H. Zhu, B. Wu: Journal of oil (oil processing) Vol. 25 (2009), p.731—735.

Google Scholar

[8] X. Li,X. Zhang,Q. Yuan: Journal of petroleum university (natural science edition) Vol. 28 (2004), p.99—112.

Google Scholar

[9] Z. Lv, L. Yao,Z. Zhang: Journal of Liaoning university of petroleum chemical industry Vol. 26 (2006), p.1—3.

Google Scholar

[10] X. Ren, L. Qi: Journal of process engineering Vol. 4 (2004), p.401—406.

Google Scholar

[11] Q. Shi, D. Hou: Journal of Instrumental Analysis Vol. 26 (2007), p.317—320.

Google Scholar

[12] S. Yu, S. Bai: Modern Chemical Industry Vol. 26 (2006), p.25—29.

Google Scholar

[13] X. Ren, Y. Song, S. Ren: Journal of process engineering Vol. 3 (2003), p.218—221.

Google Scholar

[14] J. Wang, B. Li: Guangzhou chemical industry Vol. 39 (2011), p.67—69.

Google Scholar

[15] F. Deng, D. Guo: Chinese Journal of Analysis Laboratory Vol. 26 (2007), p.15—17.

Google Scholar

[16] K. Nakashima, F. Kubota, T. Mamyama: Anal,SCi.Vol. 23 (2005), p.185—192.

Google Scholar

[17] Q. Y. Deng: Joumal 0f Molecular catalysis(A):Chemical Vol 65 (2001), p.33—36.

Google Scholar

[18] Y. Jia , W. Xu: Natural Gas Chemical Vol. 29 (2004), p.54—58.

Google Scholar

[19] J. H. Clements: Eng Chem Re Vol. 42 (2003), p.663—674.

Google Scholar

[20] Y. Q. Deng, S. Feng, J. Beng. Joumal of Molecular catalysis(A):Chemical Vol. 65 (2001), p.33—36.

Google Scholar