Vibrationally Averaged Potential Energy Surfaces and Microwave Spectra for Isotopic Ne-CO2 Complexes

Article Preview

Abstract:

Averaged potential energy surfaces for isotopic Ne–CO2 complexes (20Ne–18O 13C16O, 20Ne–17O 12C16O and 22Ne–17O 12C16O) are presented. According to the latest ab initio potential of 20Ne–12C16O2(R. Chen, H. Zhu, D. Q. Xie, J. Chem. Phys, 133, 2010, 104302,) which incorporates its dependence on the Q3 normal mode for the antisymmetric stretching vibration of the CO2 molecule, we obtain the averaged potentials for 20Ne–18O 13C16O, 20Ne–17O 12C16O and 22Ne–17O 12C16O complexes by integrating the potential energy surface over Q3 normal mode. Each averaged potential surfaces are found to have a T-shaped global minimum and two equivalent linear local minima. The radial DVR/angular FBR method and the Lanczos algorithm are applied to calculate the rovibrational energy levels. Comparison with the available experimental values showed an overall excellent agreement for all spectroscopic parameters and the microwave spectra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-239

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Steed, T. A. Dixion, W. Klemperer: J. Chem. Phys. 70 (1979) 4095.

Google Scholar

[2] R. W. Randall, M. A. Walsh, B. J. Howard: Faraday Discuss. Chem. Soc. 85 (1988) 13.

Google Scholar

[3] G. T. Fraser, A. S. Pine, R. D. Suenram: J. Chem. Phys. 88 (1988) 6157.

Google Scholar

[4] A. S. Pine, G. T. Fraser: J. Chem. Phys. 89 (1988) 100.

Google Scholar

[5] M. Iida, Y. Ohsbima, Y. Endo: J. Phys. Chem. 97 (1993) 357.

Google Scholar

[6] M. J. Weida, J. M. Sperhac, D. J. Nesbitt: J. Chem. Phys. 101 (1994) 8351.

Google Scholar

[7] Y. J. Xu, W. Jäger: J. Mol. Spectrosc. 192 (1998) 435.

Google Scholar

[8] T. Konno, S. Fukuda, Y. Ozaki: Chem. Phys. Lett. 421 (2006) 421.

Google Scholar

[9] G. A. Parker, M. Keil, A. Kuppermann: J. Chem. Phys. 78 (1983) 1145.

Google Scholar

[10] M. Keil, G. A. Parker: J. Chem. Phys. 82 (1985) (1947).

Google Scholar

[11] L. Beneventi, P. Casavecchia, F. Vecchiocattivi, G. G. Volpi, U. Buck, C. Lauenstein, R. Schinke: J. Chem. Phys. 89 (1988) 4671.

DOI: 10.1063/1.455687

Google Scholar

[12] G. A. Parker, R. L. Snow, R. T. Pack: J. Chem. Phys. 64 (1976) 1668.

Google Scholar

[13] C. F. Roche, A. Ernesti, J. M. Huston, A. S. Dickinson: J. Chem. Phys. 104 (1995) 2156.

Google Scholar

[14] P. J. Marshall, M. M. Szczesniak, J. Sadlej, G. Chalasinski, M. A. ter Horst, and C. J. Jameson: J. Chem. Phys. 104 (1996) 6569.

Google Scholar

[15] J. M. Huston, A. Ernesti, M. M. Law, C. F. Roche, R. J. Wheatley: J. Chem. Phys. 105 (1996) 9130.

Google Scholar

[16] G. S. Yan, M. H. Yang, D. Q. Xie: J. Chem. Phys. 109 (1998) 10284.

Google Scholar

[17] F. Negri, F. Ancliotto, G. Mistura, and F. Toigo: J. Chem. Phys. 111 (1999) 6439.

Google Scholar

[18] H. Ran, Y. Z. Zhou, D. Q. Xie: J. Chem. Phys. 126 (2007) 204304.

Google Scholar

[19] H. Ran, D. Q. Xie: J. Chem. Phys. 128 (2008) 124323.

Google Scholar

[20] Y. L. Cui, H. Ran, D. Q. Xie: J. Theo. Comp. Chem. 7 (2008) 707.

Google Scholar

[21] R. Chen, E. Q. Jiao, H. Zhu, D. Q. Xie: J. Chem. Phys. 133 (2010) 104302.

Google Scholar

[22] Y. L. Cui, H. Ran, D. Q. Xie: J. Chem. Phys. 130 (2009) 224311.

Google Scholar

[24] R. Chen, H. Zhu: Chem. Phys. Lett, 511 (2011) 229.

Google Scholar

[25] S. Y. Lin, H. Guo: J. Chem. Phys. 117 (2002) 5183.

Google Scholar

[26] R. Q. Chen, G. B. Ma, H. Guo: Chem. Phys. Lett. 320 (2000) 567.

Google Scholar

[27] D. T. Colbert, W. H. Miller: J. Chem. Phys. 96 (1992) (1982).

Google Scholar

[28] C. Lanczos: J. Res. Natl. Bur. Stand. 45 (1950) 255.

Google Scholar

[29] H. Guo, R. Q. Chen, D. Q. Xie: J. Theo. Comp. Chem. 1 (2002) 173.

Google Scholar

[30] J. K. G. Watson: J. Chem. Phys. 46 (1967) (1935).

Google Scholar

[31] D. Q. Xie, H. Ran, Y. Z. Zhou: Int. Rev. Phys. Chem. 26 (2007) 487.

Google Scholar