Mechanorphore-Based Poly(Glycidyl Methacrylate) Synthesized by Atom Transfer Living Radical Polymerization

Article Preview

Abstract:

Mechanorphore-based Poly (glycidyl methacrylate) was synthesized by atom transfer radical polymerization (ATRP) of glycidyl methacrylate (GMA) in bulk by using spiropyran-based initiator, CuCl in combination with N,N,N’,N’’,N’’-pentamethyldiethylenetriamine (PMDETA) as catalyst. The resultant polymer was characterized by gel permeation chromatography (GPC) and 1H NMR spectroscopy. The relative molecular mass of PGMA can be changed by polymerization time. The resultant polymers have controlled molecular weight and low polydispersity. The present synthetic strategy provides a convenient and efficient method to synthesize mechanophore-linked PGMA which can be ulteriorly crosslinked to form thermosetting polymer networks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

249-252

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Weder: MECHANOCHEMISTRY Polymers react to stress. Nature 459 (2009) 45-46.

Google Scholar

[2] S.L. Potisek, D.A. Davis, N.R. Sottos, S.R. White, and J.S. Moore: Mechanophore-linked addition polymers. J. Am. Chem. Soc. 129 (2007) 13808-+.

DOI: 10.1021/ja076189x

Google Scholar

[3] M.M. Caruso, D.A. Davis, Q. Shen, S.A. Odom, N.R. Sottos, S.R. White, and J.S. Moore: Mechanically-Induced Chemical Changes in Polymeric Materials. Chem. Rev. 109 (2009) 5755-5798.

DOI: 10.1021/cr9001353

Google Scholar

[4] D.A. Davis, A. Hamilton, J. Yang, L.D. Cremar, D. Van Gough, S.L. Potisek, M.T. Ong, P.V. Braun, T.J. Martinez, S.R. White, J.S. Moore, and N.R. Sottos: Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459 (2009).

DOI: 10.1038/nature07970

Google Scholar

[5] J.M. Lenhardt, A.L. Black, and S.L. Craig: gem-Dichlorocyclopropanes as Abundant and Efficient Mechanophores in Polybutadiene Copolymers under Mechanical Stress. J. Am. Chem. Soc. 131 (2009) 10818-10819.

DOI: 10.1021/ja9036548

Google Scholar

[6] M.J. Kryger, M.T. Ong, S.A. Odom, N.R. Sottos, S.R. White, T.J. Martinez, and J.S. Moore: Masked Cyanoacrylates Unveiled by Mechanical Force. J. Am. Chem. Soc. 132 (2010) 4558-+.

DOI: 10.1021/ja1008932

Google Scholar

[7] J.M. Lenhardt, M.T. Ong, R. Choe, C.R. Evenhuis, T.J. Martinez, and S.L. Craig: Trapping a Diradical Transition State by Mechanochemical Polymer Extension. Science 329 (2010) 1057-1060.

DOI: 10.1126/science.1193412

Google Scholar

[8] D. Ramachandran and M.W. Urban: Sensing macromolecular rearrangements in polymer networks by stimuli-responsive crosslinkers. J. Mater. Chem. 21 (2011) 8300-8308.

DOI: 10.1039/c0jm03722b

Google Scholar

[9] Z.S. Kean, A.L.B. Ramirez, and S.L. Craig: High mechanophore content polyester-acrylate ABA block copolymers: Synthesis and sonochemical activation. J. Polym. Sci., Part A: Polym. Chem. 50 (2012) 3481-3484.

DOI: 10.1002/pola.26148

Google Scholar

[10] C.M. Kingsbury, P.A. May, D.A. Davis, S.R. White, J.S. Moore, and N.R. Sottos: Shear activation of mechanophore-crosslinked polymers. J. Mater. Chem. 21 (2011) 8381-8388.

DOI: 10.1039/c0jm04015k

Google Scholar

[11] T.J. Kucharski and R. Boulatov: The physical chemistry of mechanoresponsive polymers. J. Mater. Chem. 21 (2011) 8237-8255.

DOI: 10.1039/c0jm04079g

Google Scholar

[12] S.A. Odom, A.C. Jackson, A.M. Prokup, S. Chayanupatkul, N.R. Sottos, S.R. White, and J.S. Moore: Visual Indication of Mechanical Damage Using Core-Shell Microcapsules. Acs Appl. Mater. Interfaces 3 (2011) 4547-4551.

DOI: 10.1021/am201048a

Google Scholar

[13] A. Pucci and G. Ruggeri: Mechanochromic polymer blends. J. Mater. Chem. 21 (2011) 8282-8291.

DOI: 10.1039/c0jm03653f

Google Scholar

[14] K.M. Wiggins, J.N. Brantley, and C.W. Bielawski: Polymer Mechanochemistry: Force Enabled Transformations. ACS Macro Lett. 1 (2012) 623-626.

DOI: 10.1021/mz300167y

Google Scholar

[15] J.N. Brantley, K.M. Wiggins, and C.W. Bielawski: Polymer mechanochemistry: the design and study of mechanophores. Polym. Int. 62 (2013) 2-12.

DOI: 10.1002/pi.4350

Google Scholar

[16] P.F. Canamero, J.L. de la Fuente, E.L. Madruga, and M. Fernandez-Garcia: Atom transfer radical polymerization of glycidyl methacrylate: A functional monomer. Macromol. Chem. Phys. 205 (2004) 2221-2228.

DOI: 10.1002/macp.200400186

Google Scholar

[17] S. Edmondson and W.T.S. Huck: Controlled growth and subsequent chemical modification of poly(glycidyl methacrylate) brushes on silicon wafers. J. Mater. Chem. 14 (2004) 730-734.

DOI: 10.1039/b312513k

Google Scholar

[18] F.J. Xu, Q.J. Cai, Y.L. Li, E.T. Kang, and K.G. Neoh: Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromol. 6 (2005).

DOI: 10.1021/bm0493178

Google Scholar

[19] W. Hu, Y. Liu, Z. Lu, and C.M. Li: Poly oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate Brush Substrate for Sensitive Surface Plasmon Resonance Imaging Protein Arrays. Adv. Funct. Mater. 20 (2010) 3497-3503.

DOI: 10.1002/adfm.201001159

Google Scholar

[20] K. Matyjaszewski: Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules (2012).

DOI: 10.1021/ma3001719

Google Scholar

[21] X. Fang, H. Zhang, Y. Chen, Y. Lin, Y. Xu, and W. Weng: Biomimetic Modular Polymer with Tough and Stress Sensing Properties. Macromol. 46 (2013) 6566-6574.

DOI: 10.1021/ma4014862

Google Scholar

[22] F.M. Raymo and S. Giordani: Signal processing at the molecular level. J. Am. Chem. Soc. 123 (2001) 4651-4652.

DOI: 10.1021/ja005699n

Google Scholar