[1]
JIANWEN XU, SWAPAN BHATTACHARYA, PRANABES PRAMANIK, and C.P. WONG. High Dielectric Constant Polymer-Ceramic (Epoxy Varnish-Barium Titanate) Nano- composites at Moderate Filler Loadings for Embedded Capacitors. Journal of ELECTRONIC MATERIALS, Vol. 35 (2006).
DOI: 10.1007/s11664-006-0307-6
Google Scholar
[2]
MOHAMMED A. ALAM, MICHAEL H. AZARIAN, and MICHAEL G. PECHT. Embedded Capacitors in Printed Wiring Board: A Technological Review. Journal of ELECTRONIC MATERIALS, Vol. 41, No. 8 (2012).
DOI: 10.1007/s11664-012-2044-3
Google Scholar
[3]
Xingyi Huang, Pingkai Jiang, and Liyuan Xie. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 95 (2009), 242901.
DOI: 10.1063/1.3273368
Google Scholar
[4]
Ali Ghasemi, Sagar E. Shirsath, Xiaoxi Liu, and Akimitsu Morisako. A comparison between magnetic and reflection loss characteristics of substituted strontium ferrite and nanocomposites of ferrite/carbon nanotubes. Journal of Applied Physics. 111. 07B543 (2012).
DOI: 10.1063/1.3683012
Google Scholar
[5]
Z. -M. Dang, Y. -H. Lin and C. -W. Nan. Novel Ferroelectric Polymer Composites with High Dielectric Constants. Advanced Materials. Vol. 15, No. 19 (2003), 1625–1629.
DOI: 10.1002/adma.200304911
Google Scholar
[6]
Z. -M. Dang, L. Wang, Y. Yin, Q. Zhang3and Q. -Q. Lei. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites. Advanced Materials. Vol. 19 ( 2007), 852–857.
DOI: 10.1002/adma.200600703
Google Scholar
[7]
Zhi-Min Dang, Hai-Ping Xu, and Hai-Yan Wang. Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. APPLIED PHYSICS LETTERS 90, 012901(2007).
DOI: 10.1063/1.2393150
Google Scholar
[8]
Dong-Hau Kuo, Chien-Chih Chang, Te-Yeu Su, Wun-Ku Wang, Bin-Yuan Lin. Dielectric properties of three ceramic/epoxy composites. Materials Chemistry and Physics 85 201–206(2004).
DOI: 10.1016/j.matchemphys.2004.01.003
Google Scholar
[9]
Z. -M. Dang, Y. Shen, and C. -W. Nan. Dielectric behavior of three-phase percolative Ni–BaTiO 3 /polyvinylidene fluoride Composites. APPLIED PHYSICS LETTERS VOL( 81), NUMBER 25(2002).
DOI: 10.1063/1.1529085
Google Scholar
[10]
LIU Qing-min,ZHOU Debi,Yuya YAMAMOTO,Ryoichi ICHINO,Masazumi OKIDO. Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. ScienceDirect. 22(2012)1 17-123.
DOI: 10.1016/s1003-6326(11)61149-7
Google Scholar
[11]
J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. APPLIED PHYSICS LETTERS. Vol 78 , 65 (2001).
DOI: 10.1063/1.1341218
Google Scholar
[12]
Derrick Mott, Jeffrey Galkowski, Lingyan Wang, Jin Luo, and Chuan-Jian Zhong. Synthesis of Size-Controlled and Shaped Copper Nanoparticles. Langmuir (2007), 23, 5740-5745.
DOI: 10.1021/la0635092
Google Scholar
[13]
C. Pecharromán, F. Esteban-Betegón, J. F. Bartolomé, S. López-Esteban and J. S. Moya. New Percolative BaTiO3–Ni Composites with a High and Frequency-Independent Dielectric Constant (ϵr ≈ 80000). Advanced Materials. Vol 13, (2001), 1541–1544.
DOI: 10.1002/1521-4095(200110)13:20<1541::aid-adma1541>3.0.co;2-x
Google Scholar
[14]
Wenhu Yang, Shuhui Yu, Rong Sun, Ruxu Du. Effects of BaTiO3 and FeAlSi as fillers on the magnetic, dielectric and microwave absorption characteristics of the epoxy-based composites. Ceramics International 38 (2012) 3553–3562.
DOI: 10.1016/j.ceramint.2011.12.071
Google Scholar
[15]
Wenhu Yang, Shuhui Yu, Rong Sun, Ruxu Du. Dielectric Property of Nickel/Calcium Copper Titanate/Polyvinylidene Fluoride Composite. 11th International Conference on Electronic Packaging Technology & High Density Packaging (2010).
DOI: 10.1109/icept.2010.5583799
Google Scholar