[1]
W. Johnson, Cutting with tools having a rounded edge–some theoretical considerations, CIRP Annals, 1997, 14(5): 315-319.
Google Scholar
[2]
R.N. Roth, P.L.B. Oxley. Slip line field analysis for orthogonal machining based upon experimental flow fields[J], Journal of Mechanical Engineering Science, 1972, 14(2): 85-97.
DOI: 10.1243/jmes_jour_1972_014_015_02
Google Scholar
[3]
Li Hongtao, Mechanism Studies and Process Optimization of Meso Scale Milling Process Thesis, Shanghai: School of Mechanical Engineering, Shanghai Jiao Tong University (2008).
Google Scholar
[4]
W. Y. Bao, I.N. Tansel. Micro-end-milling operation. Part I: analytical cutting force model[J]. Int. J. Mach. Tools Manuf. 2004, 40(15): 2155~2175.
DOI: 10.1016/s0890-6955(00)00054-7
Google Scholar
[5]
Zhao Yan, Processing Foundation and Experiments in Micro-Milling[PhD Thesis]. Harbin: School of Mechatronics Engineering, Harbin Institute of Technology, (2008).
Google Scholar
[6]
Mohammad Malekiana, Simon S, B.G. Jun,Modelling of dynamic micro-milling cutting forces[J] ,International Journal of Machine Tools & Manufacture, 2009, 49(7): 586–598.
DOI: 10.1016/j.ijmachtools.2009.02.006
Google Scholar
[7]
Hye-Ri Gye, Byeong-Uk Song, Yong-Seok Lim, Yong-Wook Shin, Sung-Hui Jang, and Tae-Il Seo, Prediction of Cutting Force and Tool Deflection in Micro Flat End Milling[J], International Journal of Materials, Mechanics and Manufacturing, 2013, 1(1): 13-16.
DOI: 10.7763/ijmmm.2013.v1.3
Google Scholar
[8]
Wu Jihua, Deformation in Micro-Cutting Based on Strain Gradient Plasticity Theory[PhD]. Jinan: School of Mechanical Engineering, Shandong University, (2009).
Google Scholar
[9]
W.Y. Bao, I.N. Tansel . Modelling micro-end-milling operations. Part II: tool run-out [J] International Journal of Machine Tools & Manufacture, 2000, 40(15): 2175–2192.
DOI: 10.1016/s0890-6955(00)00055-9
Google Scholar
[10]
X. Liu, M. B. Jun, R.E. Devor. Cutting Mechanics and their influence on dynamic forces, vibrations and stability in micro-end-milling [J]. Proc. of ASME Manufacturing Engineering Div, Anaheim. 2004, 15(2): 583– 592.
DOI: 10.1115/imece2004-62416
Google Scholar
[11]
S.P.F.C. Jaspersa, *, J.H. Dautzenbergb. Material behaviour in conditions similar to metal cutting: flow stress in the primary shear zone[J]. Journal of Materials Processing Technology 2002, (122): 322~330.
DOI: 10.1016/s0924-0136(01)01228-6
Google Scholar
[12]
Yan Hongzhi, Gong Lijun. Constitutive model material[J]. Journal of Central South University(Science and Technology), 2012,43(11): 4268-4273.
Google Scholar
[13]
Xinmin Lai, Hongtao Li, Chengfeng Li, Zhongqin Lin, Jun Ni. Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness[J], International Journal of Machine Tools & Manufacture, 2008, 48(1) : 1–14.
DOI: 10.1016/j.ijmachtools.2007.08.011
Google Scholar
[14]
D. Tabor. The hardness of metals[M]. Oxford: Oxford University press, (2000).
Google Scholar
[15]
V. Jardret, H. Zahouani, J. L. Loubet. Understanding and quantification of elastic and plastic deformation during scratch test [J]. Wear, 1998, 218(1): 8-14.
DOI: 10.1016/s0043-1648(98)00200-2
Google Scholar
[16]
C. Zhou, Jiancheng Liu, A. Avila, Experimental Investigation of Mechanical Micro Machining for AL6061-T6 Material, Applied Mechanical and Material Vols. 217-219 (2-12) pp.1880-1994, (2012).
DOI: 10.4028/www.scientific.net/amm.217-219.1880
Google Scholar
[17]
C. Zhou, Jiancheng Liu, Simulation and Experimental Study on Size Effect in Steel Micro Milling Machining Process, Advanced Materials Research Vols. 602-604 (2013) pp.2021-2026, (2012).
DOI: 10.4028/www.scientific.net/amr.602-604.2021
Google Scholar