[1]
Noether A E, Invariante variations probleme, Nachr. Akad. Wiss G. ttingen Math. 2(1918) 235.
Google Scholar
[2]
Zhang,Y., Mei, F.X., Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system, J. Acta Phys. Sin, 53(8) (2004) 2419-2423.
DOI: 10.7498/aps.53.2419
Google Scholar
[3]
Cui J.C., Zhang Y.Y., Jia L.Q., Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic system, J. Chin. Phys. 18 (2009)1731-1737.
DOI: 10.1088/1674-1056/18/5/003
Google Scholar
[4]
Zheng S.W., Xie J.F., Chen X.W. , Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems, J. Acta Phys. Sin. 59 (2010) 5209-5212.
DOI: 10.7498/aps.59.5209
Google Scholar
[5]
Luo S.K., Li, Z.J., Li,L., A new Lie symmetrical method of finding conserved quantity for dynamical system in phase space, J. Acta Mechanica, 223(12) (2012) 2621–2632.
DOI: 10.1007/s00707-012-0729-6
Google Scholar
[6]
Li,Z.J., Jiang W.A., Luo S.K., Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems, J. Nonlinear Dyn. 67(2012) 445-455.
DOI: 10.1007/s11071-011-9993-6
Google Scholar
[7]
Luo S.K., Li,Z.J., Li,L., A new Lie symmetrical method of finding conserved quantity for dynamical system in phase space, J. Acta Mech. 223 (2012) 2621-2632.
DOI: 10.1007/s00707-012-0729-6
Google Scholar
[8]
Jia L.Q., Sun X.T., Zhang M.L., Zhang Y.Y., Han, Y,L., Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion, J. Acta Phys. Sin. 63 (2014) 010201.
DOI: 10.7498/aps.63.010201
Google Scholar
[9]
Ge, M.L., Covariant Lie variation and conformal invariance of Yang-Mills equations and Liouville equation, J. Journal of science, 20(1985) 1538-1540.
Google Scholar
[10]
Haidari, A.D., Conformal quantum Yang-Mills. J . Math Phys, 27(1986) 2409-2412.
Google Scholar
[11]
Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M, Analytical Dynamics of Helmholtz, J. Birhoff and Nambu Systems(Moscow: UFN)(in Russian) (1997).
Google Scholar
[12]
Cai J.L., Conformal invariance of Mei symmetry for a holonomic system with variable mass, J. Chin.J. Phys. 48(6) (2010) 728-735.
Google Scholar
[13]
Cai J.L., Shi, S.S., Fang, H.J. and Xu, J., Conformal Invariance for the Nonholonomic Constrained Mechanical System of Non-Chetaev's Type, J. Meccanica, 47(1) (2012) 63-69.
DOI: 10.1007/s11012-010-9414-9
Google Scholar
[14]
Huang W.L., Cai J.L., Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system, J. Acta Mech. 223(2) (2012) 433-440.
DOI: 10.1007/s00707-011-0573-0
Google Scholar
[15]
Cai, J.L., Conformal invariance of Mei symmetry for the nonholonomic system of non-Chetaev's type, J. Nonlinear Dynamics, 69(1-2) (2012) 487–493.
DOI: 10.1007/s11071-011-0279-9
Google Scholar
[16]
Cai J.L., Shi S.S., Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type, J. Acta Phys. Sin. 61(2012) 030201.
DOI: 10.7498/aps.61.030201
Google Scholar
[17]
Chen X.W., Zhao Y.H., Liu,C., Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass, J. Acta Mech. 58(8) (2009)5150-05.
Google Scholar
[18]
Cui J.C., Zhang Y.Y., Yang X.F., Jia, L.Q., Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system, J. Chin. Phys. B. 19(3) (2010) 030304.
DOI: 10.1088/1674-1056/19/3/030304
Google Scholar
[19]
Han Y.L., Sun,X. T, Zhang Y.Y., Jia, L.L., Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system, J. Acta Phys. Sin. 62 (2013) 160201.
DOI: 10.7498/aps.62.160201
Google Scholar