Conformal Invariance and Conserved Quantity of Mei Symmetry for Appell Equations in a Holonomic System with Mass Variable

Article Preview

Abstract:

For a holonomic system with variable mass, the conformal invariance and the conserved quantity of Mei symmetry of Appell equations are investigated. First, by the infinitesimal one-parameter transformation group and the infinitesimal generator vector, the Mei symmetry and the conformal invariance of differential equations of motion for Appell equations in a holonomic system with variable mass are defined, and the determining equation of Mei symmetry and conformal invariance for Appell equations in a holonomic system with variable mass are given. Then, the Mei-conserved quantity corresponding to the system is derived by means of the structure equation to which the gauge function satisfies. Finally, an example is given to illustrate the application of the result.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

617-625

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Noether A E, Invariante variations probleme, Nachr. Akad. Wiss G. ttingen Math. 2(1918) 235.

Google Scholar

[2] Zhang,Y., Mei, F.X., Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system, J. Acta Phys. Sin, 53(8) (2004) 2419-2423.

DOI: 10.7498/aps.53.2419

Google Scholar

[3] Cui J.C., Zhang Y.Y., Jia L.Q., Mei conserved quantity of the Nielsen equation for a non-Chetaev-type non-holonomic system, J. Chin. Phys. 18 (2009)1731-1737.

DOI: 10.1088/1674-1056/18/5/003

Google Scholar

[4] Zheng S.W., Xie J.F., Chen X.W. , Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems, J. Acta Phys. Sin. 59 (2010) 5209-5212.

DOI: 10.7498/aps.59.5209

Google Scholar

[5] Luo S.K., Li, Z.J., Li,L., A new Lie symmetrical method of finding conserved quantity for dynamical system in phase space, J. Acta Mechanica, 223(12) (2012) 2621–2632.

DOI: 10.1007/s00707-012-0729-6

Google Scholar

[6] Li,Z.J., Jiang W.A., Luo S.K., Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems, J. Nonlinear Dyn. 67(2012) 445-455.

DOI: 10.1007/s11071-011-9993-6

Google Scholar

[7] Luo S.K., Li,Z.J., Li,L., A new Lie symmetrical method of finding conserved quantity for dynamical system in phase space, J. Acta Mech. 223 (2012) 2621-2632.

DOI: 10.1007/s00707-012-0729-6

Google Scholar

[8] Jia L.Q., Sun X.T., Zhang M.L., Zhang Y.Y., Han, Y,L., Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion, J. Acta Phys. Sin. 63 (2014) 010201.

DOI: 10.7498/aps.63.010201

Google Scholar

[9] Ge, M.L., Covariant Lie variation and conformal invariance of Yang-Mills equations and Liouville equation, J. Journal of science, 20(1985) 1538-1540.

Google Scholar

[10] Haidari, A.D., Conformal quantum Yang-Mills. J . Math Phys, 27(1986) 2409-2412.

Google Scholar

[11] Galiullin A S, Gafarov G G, Malaishka R P, Khwan A M, Analytical Dynamics of Helmholtz, J. Birhoff and Nambu Systems(Moscow: UFN)(in Russian) (1997).

Google Scholar

[12] Cai J.L., Conformal invariance of Mei symmetry for a holonomic system with variable mass, J. Chin.J. Phys. 48(6) (2010) 728-735.

Google Scholar

[13] Cai J.L., Shi, S.S., Fang, H.J. and Xu, J., Conformal Invariance for the Nonholonomic Constrained Mechanical System of Non-Chetaev's Type, J. Meccanica, 47(1) (2012) 63-69.

DOI: 10.1007/s11012-010-9414-9

Google Scholar

[14] Huang W.L., Cai J.L., Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system, J. Acta Mech. 223(2) (2012) 433-440.

DOI: 10.1007/s00707-011-0573-0

Google Scholar

[15] Cai, J.L., Conformal invariance of Mei symmetry for the nonholonomic system of non-Chetaev's type, J. Nonlinear Dynamics, 69(1-2) (2012) 487–493.

DOI: 10.1007/s11071-011-0279-9

Google Scholar

[16] Cai J.L., Shi S.S., Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type, J. Acta Phys. Sin. 61(2012) 030201.

DOI: 10.7498/aps.61.030201

Google Scholar

[17] Chen X.W., Zhao Y.H., Liu,C., Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass, J. Acta Mech. 58(8) (2009)5150-05.

Google Scholar

[18] Cui J.C., Zhang Y.Y., Yang X.F., Jia, L.Q., Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system, J. Chin. Phys. B. 19(3) (2010) 030304.

DOI: 10.1088/1674-1056/19/3/030304

Google Scholar

[19] Han Y.L., Sun,X. T, Zhang Y.Y., Jia, L.L., Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system, J. Acta Phys. Sin. 62 (2013) 160201.

DOI: 10.7498/aps.62.160201

Google Scholar