Critical Cooling Rate of Y36Nd20Al24Co20 Bulk Amorphous Alloy

Article Preview

Abstract:

A new bulk amorphous alloy, Y36Nd20Al24Co20, with a diameter of 5 mm was successfully fabricated by the method of equiatomic substitution for the Y element in Y56Al24Co20 amorphous alloy. The values of the supercooled liquid region ∆Tx(=Tx-Tg ), the reduced glass transition temperature Trg (=Tg/Tl) and the parameter γ (=Tx/(Tg+Tl)) for Y36Nd20Al24Co20 bulk amorphous alloy are 60K, 0.605 and 0.415, respectively. The critical cooling rate of the Y36Nd20Al24Co20 bulk amorphous alloy was determined to be 40 K/s, providing an indication that this alloy has a high glass-forming ability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-89

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.L. Peker, W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5, Appl. Phys. Lett. 63 (1993) 2342-2344.

Google Scholar

[2] A. Inoue, T. Zhang, A. Takeuchi, Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe-TM-B System, Appl. Phys. Lett. 71 (1997) 464-466.

DOI: 10.1063/1.119580

Google Scholar

[3] H.M. Fu, H.F. Zhang,  H. Wang,  Z.Q. Hu, Cu-based bulk amorphousalloy with larger glass-forming ability and supercooled liquid region, J. Alloys Compd. 458 (2008) 390-393.

DOI: 10.1016/j.jallcom.2007.03.114

Google Scholar

[4] Y.C. Kim, J.C. Lee, P.R. Cha, J.P. Ahn, E. Fleury, Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses, Mater. Sci. Eng. A , 437(2006) 248-253.

DOI: 10.1016/j.msea.2006.07.141

Google Scholar

[5] D. Kim, B. J. Lee, and N. J. Kim, Prediction of composition dependency of glass forming ability of Mg-Cu-Y alloys by thermodynamic approach, Scripta Mater. 52 (2005)969-972.

DOI: 10.1016/j.scriptamat.2005.01.038

Google Scholar

[6] Y. C. Kim,  W. T. Kim, D. H. Kim, A developemnt of Ti-based bulk metallic glass, Mater. Sci. Eng A, 375-377(2004)127-135.

DOI: 10.1016/j.msea.2003.10.115

Google Scholar

[7] B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Grees, Amorphous metallic plastic, Phys. Rev. Lett. 94 (2005)205502-1-4.

Google Scholar

[8] S. Li,R.J. Wang, W.H. Wang, Bulk metallic glasses based on rare-earth elements in lanthanum series, J. Non-Cryst. Solids, 352(2006)3942-3946.

DOI: 10.1016/j.jnoncrysol.2006.05.039

Google Scholar

[9] F.Q. Guo, S.J. Poon, G.J. Shiflet, Metallic glass ingots based on yttrium, Appl. Phys. Lett. 83 (2003) 2575-2577.

DOI: 10.1063/1.1614420

Google Scholar

[10] S.W. He,Y. Liu, B.Y. Huang, Z.T. Li, H. Wu, Effect of Zr on glass-forming ability and crystallization kinetic of Y56Al24Co20 metallic glass, J. Mater. Process. Technol. 204 (2008)179-182.

DOI: 10.1016/j.jmatprotec.2007.11.030

Google Scholar

[11] K.B. Kim, P.J. Warren, B. Cantor, Glass-forming ability of novel multi-component (Ti33Zr33Hf33)-(Ni50Cu50)-Al alloys developed by equiatomic substitution, Mater. Sci. Eng. A, 375-377(2004) 317-321.

DOI: 10.1016/j.msea.2003.10.114

Google Scholar

[12] K.B. Kim, P.J. Warren, B. Cantor, Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys, J. Non-Cryst. Solids, 317 (2003) 17-22.

DOI: 10.1016/s0022-3093(02)02002-1

Google Scholar

[13] Z. P. Lu, Y. Li, S. C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, J. Non-Cryst. Solids, 270 (2000)103-114.

DOI: 10.1016/s0022-3093(00)00064-8

Google Scholar

[14] Z. P. Lu and C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50(2002) 3501-3512.

DOI: 10.1016/s1359-6454(02)00166-0

Google Scholar

[15] D.R. Uhlmann, A kinetic treatment of glass formation, J. Non-Cryst. Solids, 7 (1972) 337-348.

Google Scholar

[16] J.M. Barandiaran, J. Colmenero, Continuous cooling approximation for the formation of a glass, J. Non-Cryst. Solids, 46 (1981) 277-287.

DOI: 10.1016/0022-3093(81)90006-5

Google Scholar