[1]
A.L. Peker, W.L. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5, Appl. Phys. Lett. 63 (1993) 2342-2344.
Google Scholar
[2]
A. Inoue, T. Zhang, A. Takeuchi, Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe-TM-B System, Appl. Phys. Lett. 71 (1997) 464-466.
DOI: 10.1063/1.119580
Google Scholar
[3]
H.M. Fu, H.F. Zhang, H. Wang, Z.Q. Hu, Cu-based bulk amorphousalloy with larger glass-forming ability and supercooled liquid region, J. Alloys Compd. 458 (2008) 390-393.
DOI: 10.1016/j.jallcom.2007.03.114
Google Scholar
[4]
Y.C. Kim, J.C. Lee, P.R. Cha, J.P. Ahn, E. Fleury, Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses, Mater. Sci. Eng. A , 437(2006) 248-253.
DOI: 10.1016/j.msea.2006.07.141
Google Scholar
[5]
D. Kim, B. J. Lee, and N. J. Kim, Prediction of composition dependency of glass forming ability of Mg-Cu-Y alloys by thermodynamic approach, Scripta Mater. 52 (2005)969-972.
DOI: 10.1016/j.scriptamat.2005.01.038
Google Scholar
[6]
Y. C. Kim, W. T. Kim, D. H. Kim, A developemnt of Ti-based bulk metallic glass, Mater. Sci. Eng A, 375-377(2004)127-135.
DOI: 10.1016/j.msea.2003.10.115
Google Scholar
[7]
B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Grees, Amorphous metallic plastic, Phys. Rev. Lett. 94 (2005)205502-1-4.
Google Scholar
[8]
S. Li,R.J. Wang, W.H. Wang, Bulk metallic glasses based on rare-earth elements in lanthanum series, J. Non-Cryst. Solids, 352(2006)3942-3946.
DOI: 10.1016/j.jnoncrysol.2006.05.039
Google Scholar
[9]
F.Q. Guo, S.J. Poon, G.J. Shiflet, Metallic glass ingots based on yttrium, Appl. Phys. Lett. 83 (2003) 2575-2577.
DOI: 10.1063/1.1614420
Google Scholar
[10]
S.W. He,Y. Liu, B.Y. Huang, Z.T. Li, H. Wu, Effect of Zr on glass-forming ability and crystallization kinetic of Y56Al24Co20 metallic glass, J. Mater. Process. Technol. 204 (2008)179-182.
DOI: 10.1016/j.jmatprotec.2007.11.030
Google Scholar
[11]
K.B. Kim, P.J. Warren, B. Cantor, Glass-forming ability of novel multi-component (Ti33Zr33Hf33)-(Ni50Cu50)-Al alloys developed by equiatomic substitution, Mater. Sci. Eng. A, 375-377(2004) 317-321.
DOI: 10.1016/j.msea.2003.10.114
Google Scholar
[12]
K.B. Kim, P.J. Warren, B. Cantor, Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)–(Ni, Cu, Ag)–Al alloys, J. Non-Cryst. Solids, 317 (2003) 17-22.
DOI: 10.1016/s0022-3093(02)02002-1
Google Scholar
[13]
Z. P. Lu, Y. Li, S. C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, J. Non-Cryst. Solids, 270 (2000)103-114.
DOI: 10.1016/s0022-3093(00)00064-8
Google Scholar
[14]
Z. P. Lu and C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Acta Mater. 50(2002) 3501-3512.
DOI: 10.1016/s1359-6454(02)00166-0
Google Scholar
[15]
D.R. Uhlmann, A kinetic treatment of glass formation, J. Non-Cryst. Solids, 7 (1972) 337-348.
Google Scholar
[16]
J.M. Barandiaran, J. Colmenero, Continuous cooling approximation for the formation of a glass, J. Non-Cryst. Solids, 46 (1981) 277-287.
DOI: 10.1016/0022-3093(81)90006-5
Google Scholar