[1]
A.S. Wadajkar, Z., Bhavsar C.Y. Ko, B. Koppolu, W. Cui, L. Tang, et al. Multifunctional particles for melanoma-targeted drug delivery. Acta biomaterialia 8 (2012) 2996-3004.
DOI: 10.1016/j.actbio.2012.04.042
Google Scholar
[2]
J. Ding, X. Zhuang, C. Xiao, Y. Cheng, L. Zhao, C. He, et al. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry 21 (2011)11383-11391.
DOI: 10.1039/c1jm10391a
Google Scholar
[3]
Y. Yan, D. Wei, J. Li, J. Zheng, G. Shi, W. Luo, et al. A poly(L-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release. Acta biomaterialia 8 (2012) 2113-2120.
DOI: 10.1016/j.actbio.2012.02.016
Google Scholar
[4]
K.C. Hribar, M.H. Lee, D. Lee, J.A. Burdick. Enhanced Release of Small Molecules from Near-Infrared Light Responsive Polymer−Nanorod Composites. ACS Nano 5 (2011) 2948-2956.
DOI: 10.1021/nn103575a
Google Scholar
[5]
A. Baeza, E. Guisasola, E. Ruiz-Hernández, M. Vallet-Regí. Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials 24 (2012) 517-524.
DOI: 10.1021/cm203000u
Google Scholar
[6]
F. Shi, J. Ding, C. Xiao, X. Zhuang, C. He, L. Chen, et al. Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry 22 (2012).
DOI: 10.1039/c2jm32033a
Google Scholar
[7]
J.X. Ding, C.S. Xiao, C.L. He, M.Q. Li, D. Li, Zhuang XL, et al. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology 22 (2011) 494012-494020.
DOI: 10.1088/0957-4484/22/49/494012
Google Scholar
[8]
M. Oishi, Y. Nagasaki. Stimuli-responsive smart nanogels for cancer diagnostics and therapy. Nanomedicine 5 (2010); 451-468.
DOI: 10.2217/nnm.10.18
Google Scholar
[9]
Q. Wu, L. Wang, H. Yu, J. Wang, Z. Chen. Organization of Glucose-Responsive Systems and Their Properties. Chemical reviews 111 (2011) 7855-7875.
DOI: 10.1021/cr200027j
Google Scholar
[10]
P. Díez, A. Sánchez, M. Gamella, P. Martínez-Ruíz, E. Aznar, C. de la Torre, et al. Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society 136 (2014).
DOI: 10.1021/ja503578b
Google Scholar
[11]
R. Yin, K. Wang, S. Du, L. Chen, J. Nie, W. Zhang. Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydrate Polymers 103 (2014) 369-376.
DOI: 10.1016/j.carbpol.2013.12.067
Google Scholar
[12]
R. Ma, L. Shi. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polymer Chemistry 5 (2014) 1503-1518.
DOI: 10.1039/c3py01202f
Google Scholar
[13]
M. Chen, C. Huang, C. He, W. Zhu, Y. Xu, Y. Lu. A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications 48 (2012) 9522-9524.
DOI: 10.1039/c2cc34290a
Google Scholar
[14]
R. Yin, Z. Tong, D. Yang, J. Nie. Glucose-responsive insulin delivery microhydrogels from methacrylated dextran/concanavalin A: Preparation and in vitro release study. Carbohydrate Polymers 89 (2012) 117-123.
DOI: 10.1016/j.carbpol.2012.02.059
Google Scholar
[15]
W. Wu, S. Zhou. Responsive Materials for Self-Regulated Insulin Delivery. Macromolecular Bioscience 13 (2013) 1464-1477.
DOI: 10.1002/mabi.201300120
Google Scholar
[16]
M. Samoszuk, D. Ehrlich, E. Ramzi. Preclinical Safety Studies of Glucose-Oxidase. J Pharmacol Exp Ther 266 (1993) 1643-1648.
Google Scholar
[17]
R. Ballerstadt, C. Evans, R. McNichols, A. Gowda. Concanavalin A for in vivo glucose sensing: a biotoxicity review. Biosensors & bioelectronics 22 (2006) 275-284.
DOI: 10.1016/j.bios.2006.01.008
Google Scholar