[1]
S. Wild, G. Roglic, A. Green, R. Sicree, H. King. Global prevalence of diabetes - Estimates for the year 2000 and projections for 2030. Diabetes Care 27 (2004) 1047-1053.
DOI: 10.2337/diacare.27.10.2569-a
Google Scholar
[2]
Q. Wu, L. Wang, H. Yu, J. Wang, Z. Chen. Organization of Glucose-Responsive Systems and Their Properties. Chem Review 12 (2011) 7855-7875.
DOI: 10.1021/cr200027j
Google Scholar
[3]
M. Chen, C. Huang, C. He, W. Zhu, Y. Xu, Y. Lu. A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications 48 (2012) 9522-9524.
DOI: 10.1039/c2cc34290a
Google Scholar
[4]
K. Sato, K. Yoshida, S. Takahashi, J. Anzai. pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Advanced drug delivery reviews 63 (2011) 809-821.
DOI: 10.1016/j.addr.2011.03.015
Google Scholar
[5]
W. Zhao, H. Zhang, Q. He, Y. Li, J. Gu, L. Li, H. Li, J. Shi. A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications 47 (2011) 9459-9461.
DOI: 10.1039/c1cc12740c
Google Scholar
[6]
M. Samoszuk, D. Ehrlich, E. Ramzi. Preclinical Safety Studies of Glucose-Oxidase. Journal of Pharmacology and Experimental Therapeutics 266 (1993) 1643-1648.
Google Scholar
[7]
X. Shao, Q. Liu, C., X. Zheng, J. Chen, Y. Zha and so on. Concanavalin A-conjugated poly(ethylene glycol)–poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes. Journal of Microencapsulation 30 (2013) 780-786.
DOI: 10.3109/02652048.2013.788086
Google Scholar
[8]
R. Yin, K. Wang, S. Du, L. Chen, J. Nie, W. Zhang. Design of genipin-crosslinked microgels from concanavalin A and glucosyloxyethyl acrylated chitosan for glucose-responsive insulin delivery. Carbohydrate Polymers 103 (2014) 369-676.
DOI: 10.1016/j.carbpol.2013.12.067
Google Scholar
[9]
R. Ballerstadt, C. Evans, R. McNichols, A. Gowda. Concanavalin A for in vivo glucose sensing: a biotoxicity review. Biosensors & bioelectronics 22 (2006) 275-284.
DOI: 10.1016/j.bios.2006.01.008
Google Scholar
[10]
R. Nishiyabu, Y. Kubo, T.D. James, J.S. Fossey. Boronic acid building blocks: tools for self assembly. Chem Commun (Camb) 47 (2011) 1124-1150.
DOI: 10.1039/c0cc02921a
Google Scholar
[11]
Véronique Lapeyre, Isabelle Gosse, Sylviane Chevreux, Valérie Ravaine. Monodispersed glucose-responsive microgels operating at physiological salinity. Biomacromolecules 7 (2006) 3356-3363.
DOI: 10.1021/bm060588n
Google Scholar
[12]
D. James Tony, K.R.A.S. Sandanayake, Shinkai Seiji. Saccharidnachweis mit Rezeptoren auf Boronsäurebasis. Angewandte Chemie 108 (1996) 2038-(2050).
DOI: 10.1002/ange.19961081706
Google Scholar
[13]
R. Ma, L. Shi. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery. Polymer Chemistry 5 (2014) 1503-1518.
DOI: 10.1039/c3py01202f
Google Scholar
[14]
S. Lee, J. H. Nam, Y. J. Kim, Y. J. Cho, N. H. Kwon, J. Y. Lee, et al. Synthesis of PEO-based glucose-sensitive block copolymers and their application for preparation of superparamagnetic iron oxide nanoparticles. Macromolecular Research 19 (2011).
DOI: 10.1007/s13233-011-0810-3
Google Scholar
[15]
L. Zhao, C. Xiao, J. Ding, P. He, Z. Tang, X. Pang, et al. Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Acta biomaterialia 9 (2013) 6535-6543.
DOI: 10.1016/j.actbio.2013.01.040
Google Scholar
[16]
Springsteen Greg, Wang Binghe. Alizarin Red S. as a general optical reporter for studying the binding of boronic acids with carbohydrates. Chemical Communications 17 (2001) 1608-1609.
DOI: 10.1039/b104895n
Google Scholar
[17]
M. Akira, Y. Kazuya, Y. Ryo, K. Kazunori, A. Takao, Y. Miyahara. A totally synthetic glucose responsive gel operating in physiological aqueous conditions. Chem Commun (Camb) 46 (2010) 2203-2205.
DOI: 10.1039/b920319b
Google Scholar