Information Technology of Estimation and Forecasting Innovative Activity Based on Distributed Data Input

Article Preview

Abstract:

The usage of the neuronetwork model of experts’ interaction in forecasting the influence of results of innovation’s industrial implantation is offered. The concept of the web oriented expert system construction is proved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

579-585

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Godet М. Reducing the Blunders in Forecasting / Futures, 1983. — 15, № 3. — P. 181–192.

DOI: 10.1016/0016-3287(83)90164-7

Google Scholar

[2] Cohen, W. (1996). Empirical studies of innovative activity,. in P. Stoneman (ed. ), The Handbook of the Economics of Technological Change, Oxford: Basil Blackwell, 182-264.

Google Scholar

[3] Rybina G.V. Bases of intellectual systems construction. – M.: Finansy i statistika; INFRA-M, 2010. 432 p.

Google Scholar

[4] Rowe, Gene & Wright, George (2001). Expert opinions in forecasting: The role of the Delphi technique, In: J. S. Armstrong (Ed. ), Principles of Forecasting. Boston: Kluwer Academic Publishers.

Google Scholar

[5] Nesteruk D.N. Monitoring of innovative activity efficiency / Kreativnaya ekonomika. – 2010. - #2 – P. 62-67.

Google Scholar

[6] Momot M.V., Nesteruk D.N. Gathering and processing the expert data using web-centric system / Gornoe mashinostroenie: Sbornik materialov. Otdel'nyi vypusk Gornogo informacionno-analiticheskogo byulletenya (nauchno-tehnicheskogo zhurnala). – 2011. - #OV2. – 488p. – M.: izdatel'stvo «Gornaya kniga». P. 330-335.

Google Scholar

[7] Korikov A.M., Nesteruk D.N. Estimation of innovative projects efficiency in mechanical engineering / Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, #2 (24), v. 3, 2011, P. 142-147.

Google Scholar

[8] U. S. Environmental Protection Agency. 1998. Guidelines for Ecological Risk Assessment. Published on May 14, 1998, Federal Register 63(93): 26846-26924. Washington, D.C.: U. S. Environmental Protection Agency.

Google Scholar

[9] J. Scott Armstrong. The Forecasting Canon: Nine Generalizations to Improve Forecast Accuracy / International Journal of Applied Forecasting, Vol. 1, pp.29-35, June (2005).

Google Scholar

[10] Rothwell R. Towards the fifth-generation innovation process / International Marketing Review, Vol. 11 No. 1, 1994. MCB University Press, pp.7-31.

Google Scholar