Distributed Intelligent Field Information Processing for Agile Manufacturing

Article Preview

Abstract:

The ability of acquiring and processing information in manufacturing influences agile of manufacturing system. According to the idea that networked field information processing is realized based on intelligent nodes of field-bus technology, distributed intelligent field information processing flow is researched to synthesize multiple functions such as information gathering, information processing, warning system and field control. The method of information represented and collected was put forward. The multilayer data fusion model of distributed intelligent field information processing is built. Then the distributed LonWorks fieldbus monitoring model (DLFMM) based on LonWorks fieldbus technology is established. A monitoring system of a rail vehicle automatic door factory is shown as an example to illustrate design strategy of monitoring system based on DLFMM. This monitoring system shows that the model of distributed intelligent field information processing, DLFMM and the extraction and representation of information flow discussed in this paper are reasonable and applicable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2956-2962

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Vinodh, S.R. Devadasan, K.E.K. Vimal, D. Kumar; J of Manuf Syst Vol. 32 (2013), p.620.

Google Scholar

[2] F. Pan, R. Nagi: Comput Oper Res Vol. 37(2010), p.668.

Google Scholar

[3] S. Minhas, C. Juzek, U. Berger: Procedia CIRP Vol. 3(2012), p.215.

Google Scholar

[4] J.C. Hernandez-Matias, A. Vizan, J. Perez-Garcia, J. Rios; Robot CIM-INT Manuf Vol. 24 (2008), p.187.

Google Scholar

[5] S. Liu, J.B. Qu, J.H. Pan; Procedia Eng Vol. 15(2011), p.2943.

Google Scholar

[6] E. Tatara, A. Çınar, F. Teymour; J Process Contr Vol. 17 (2007), p.415.

Google Scholar

[7] X. Desforges, A. Habbadi, B. Archimède; Robot CIM-INT Manuf Vol. 27(2011), p.963.

Google Scholar

[8] J.J.A. Saiz, R.R. Rodriguez, A.O. Bas; Comput Ind Vol. 61(2010), p.676.

Google Scholar

[9] N. Mishraa, A.K. Choudhary, M.K. Tiwari, RaviShankar, Robot CIM-INT Manuf Vol. 26(2010), p.325.

Google Scholar

[10] C. Şahin, E.D. Bolat; Comput Stand Inter Vol. 31(2009), p.984.

Google Scholar

[11] L. Ribeiro, J. Barata; Comput Ind Vol. 62(2011), p.639.

Google Scholar

[12] D. Trentesaux; Eng Appl Artif Intel Vol. 22(2009), p.971.

Google Scholar

[13] R. Hüsemann, C.E.A. Pereira; Control Eng Pract Vol. 15(2007), p.955.

Google Scholar

[14] A. Francalanza, A. Gauci G.J. Pace; J Log Algeb Prog. Vol. 82(2013), p.186.

Google Scholar

[15] K. W. Song, G.S. Choi; Mechatronics Vol. 20(2010), p.415.

Google Scholar

[16] I. Seilonen, T. Pirttioja, K. Koskinen; Eng Appl Artif Intel Vol. 22(2009), p.1056.

Google Scholar

[17] T. Konno, A. Cabrera, M. Ishitsuka, M. Kuze, Y. Sakamoto; Phys Procedia 37(2012), p.1835.

Google Scholar

[18] K.K. Tan, S.N. Huang, Y. Zhang; Comput Stand Inter VoL. 31(2009), p.573.

Google Scholar

[19] Z.D. Zhou, Q . Liu, Q.S. Ai, X. Cheng; Measurement Vol. 44(2011) , p.1499.

Google Scholar

[20] H.C. Amos, N.J. Adolfsson, M. Sundberg, L.J. De Vin; Int J Mach Tool Manu Vol. 48(2008), p.565.

Google Scholar

[21] M. Salehi, A. Bahreininejad, I. Nakhai; Neurocomputing Vol. 74(2011), p. (2083).

Google Scholar

[22] J.B. Yu, L.F. Xi, X.J. Zhou; Comput Ind VoL. 59(2008), p.489.

Google Scholar

[23] N.P. Mahalik, M. Yen; Comput Stand Inter Vol. 31(2009), p.586.

Google Scholar

[24] W.T. Sung; Expert Syst Appl Vol. 37(2010), p.2124.

Google Scholar

[25] K.H. Cheng; J Franklin Instit Vol. 346(2009), p.267.

Google Scholar

[26] Z.W. Wang, P.A. Du, Y.T. Yu; Comput Ind Eng Vol. 56(2009), p.1559.

Google Scholar