A Research on Impedance Control Based on ANN Inverse System for Robot Manipulator

Article Preview

Abstract:

Because of lacking the imprecise mathematical model is a difficult problem in the area of dynamic control for robot manipulator. In this paper, a novel scheme which can realize the decoupling for robot by ANN inverse system in the inner loop and control the position and force in the outer loop is presented. The method is studied in the environment of Matlab and is realized by a manipulator in Lab. Analyzed from the experiment result, this algorithm is very feasible and it provides a basis for the further research.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

560-563

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DAI Xianzhong, LIU Jun, FENG C, et al, Neural Network αth Inverse System Method for The Control of Nonlinear Continuous System,. IEEE Proc. Control Theory and Appl, china, 1998, 145(6), pp.519-522.

DOI: 10.1049/ip-cta:19982411

Google Scholar

[2] DAI Xianzhong, HE Dan, ZHANG X, et al, MIMO System Invertibility and Decoupling Control Strategies Based ANN αth Inversion, IEEE Proc. Control Theory and Appl, china, 2001, 148(2), pp.125-136.

DOI: 10.1049/ip-cta:20010283

Google Scholar

[3] Seul Jung. T. C. Hsia and R.G. Bonitz. Force Tracking Impedance Control of Robot Manipulators Under Unknown Environment. IEEE Transaction on Control Systems Technology. Vol. 12. No. 3. 2004: 474-483.

DOI: 10.1109/tcst.2004.824320

Google Scholar

[4] S. Jung, T.C. Hsia. Neural network techniques for robust force control of robot manipulators. In Proc. IEEE Symp. Intelligent Control, Monterey, CA, Aug. 1995: 111-116.

DOI: 10.1109/isic.1995.525046

Google Scholar

[5] T.C. Hsia. Simple robust schemes for Cartesian space control of robot manipulators. Int. J. Robot. Automat. Vol. 9, No. 4. 1994: 167-174.

Google Scholar

[6] H Miyamoto, M Kawato, T Setoyama. Feedback error learning neural network for trajectory control of a robotic manipulator. Neural Networks, 1988, 1(3): 251-265.

DOI: 10.1016/0893-6080(88)90030-5

Google Scholar

[7] Armstrong. B, Khatib. O., Burdick. J. The explicit dynamic model and inertial parameters of the PUMA 560 arm. Robotics and Automation IEEE International Conference, Vol3, 1986: 510-518.

DOI: 10.1109/robot.1986.1087644

Google Scholar

[8] F. Chaumette,S. Hutchinson. Visual Servo Control Part I: Basic Approaches[J]. IEEE Transactions on Robotics & Automation Magazine, December 2006: 82-90.

DOI: 10.1109/mra.2006.250573

Google Scholar

[9] F. Chaumette, S. Hutchinson. Visual Servo Control Part II: Advanced Approaches[J]. IEEE Transactions on Robotics & Automation Magazine, March 2007: 109-118.

DOI: 10.1109/mra.2007.339609

Google Scholar

[10] N. Mansard, M. Lopes,J. Santo-Victor and F. Chaumette. Jacobian Learning Methods for Tasks Sequencing in Visual Servoing. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C], Beijing, China, 2006: 4284-4290.

DOI: 10.1109/iros.2006.281958

Google Scholar

[11] K. Hosoda, M. Asada. Versatile visual servoing without knowledge of true jacobian [A]. IEEE Conference On Intelligent Robots and Systems[C], 1994: 186-193.

DOI: 10.1109/iros.1994.407392

Google Scholar

[12] KANG Q.C. Application of Pseudo-inverse Estimation of Image Jacobian Matrix to Visual Servoing[J]. Robot, 2006, 28(4): 406-409.

Google Scholar