Robust Autonomous Car-Like Robot Tracking Based on Tracking-Learning-Detection

Article Preview

Abstract:

This paper proposes a robust tracking algorithm for an autonomous car-like robot, and this algorithm is based on the Tracking-Learning-Detection (TLD). In this paper, the TLD method is extended to track the autonomous car-like robot for the first time. In order to improve accuracy and robustness of the proposed algorithm, a method of symmetry detection of autonomous car-like robot rear is integrated into the TLD. Moreover, the Median-Flow tracker in TLD is improved with a pyramid-based optical flow tracking method to capture fast moving objects. Extensive experiments and comparisons show the robustness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

564-571

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jihyun Yoon and Carl D. Crane III. LADAR based obstacle detection in an urban environment and its application in the DARPA Urban challenge. International Conference on Control, Automation and Systems 2008, 2008, pp.581-585.

DOI: 10.1109/iccas.2008.4694569

Google Scholar

[2] Frank E. Schneider, Dennis Wildermuth and Hans-Ludwig Wolf. Professional Ground Robotic Competitions From an Educational Perspective. Intelligent Systems (IS), 2012 6th IEEE International Conference, 2012, pp.399-405.

DOI: 10.1109/is.2012.6335168

Google Scholar

[3] T. Liu, N. Zheng, L. Zhao, and H. Cheng, Learning based symmetric features selection for vehicle detection, inProc. IEEE Intell. Veh. Symp. Jun. 2005, p.124–129.

Google Scholar

[4] Thomas Zielke, Michael Brauckmann, and Werner von Seelen. Intensity and edge-based symmetry detection applied to car-following. Computer Vision — ECCV'92 Lecture Notes in Computer Science Volume 588, 1992, pp.865-873.

DOI: 10.1007/3-540-55426-2_100

Google Scholar

[5] ALI A, AFGHANI S. Shadow based on-road vehicle detection and verification using Haar  wavelet transform[C]. International Conference on Information and Communication Technologies, 2005, pp.346-346.

DOI: 10.1109/icict.2005.1598621

Google Scholar

[6] Hoffman C, Dang T, Stiller C. Vehicle detection fusing 2D visual features [A]. In: IEEE Proceedings of Intelligent Vehicles Symposium[C], parma, Italy, 2004, pp.280-285.

DOI: 10.1109/ivs.2004.1336395

Google Scholar

[7] GAO D ZH, DUAN J M, ZHENG B G, et al. Preceding vehicles detection based on vehicle features[C]. Second International Symposium on Intelligent Information Technology Application, 2008, pp.408-412.

DOI: 10.1109/iita.2008.194

Google Scholar

[8] Narayan Srinivasa. Vision-based vehicle detection and tracking method for forward collision warning in automobiles[C]. IEEE Intelligent Vehicle Symposium, 2002(2) , pp.626-631.

DOI: 10.1109/ivs.2002.1188021

Google Scholar

[9] Collado JM, Hilario C, Escalera A. Model based vehicle detection for intelligent vehicles[A]. In: IEEE Proceedings of Intelligent Vehicles Symposium[C], Parma, Italy, 2004, p.572~577.

DOI: 10.1109/ivs.2004.1336447

Google Scholar

[10] D. Kasper, G. Weidl, T. Dang, G. Breuel, A. Tamke, and W. Rosenstiel, Object-oriented Bayesian networks for detection of lane change maneuvers, inProc. IEEE IV, Jun. 2011, p.673–678.

DOI: 10.1109/ivs.2011.5940468

Google Scholar

[11] Sayanan Sivaraman, and Mohan Manubhai Trivedi. A General Active-Learning Framework for On-Road Vehicle Recognition and Tracking. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010, p.267–276.

DOI: 10.1109/tits.2010.2040177

Google Scholar

[12] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-Learning-Detection. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012, pp.1409-1422.

DOI: 10.1109/tpami.2011.239

Google Scholar

[13] Fernando Garcia, Pietro Cerri, Alberto Broggi, Arturo de la Escalera and José María Armingol. Data Fusion for Overtaking V ehicle Detection based on Radar and Optical Flow. 2012 Intelligent Vehicles Symposium Alcalá de Henares, Spain, June 3-7, 2012, pp.494-499.

DOI: 10.1109/ivs.2012.6232199

Google Scholar

[14] A. Giachetti, M. Campani, V. Torre. The Use of Optical Flow for Road Navigation[J], IEEE Transactions on Robotics and Automation, 1988, 14(1) , pp.34-48.

DOI: 10.1109/70.660838

Google Scholar

[15] P. Batavia, D. Pomerleau, C. Thorpe. Over taking Vehicle Detection Using Implicit Optical Flow[C], Proceeding of the IEEE Conference on Intelligent Transportation System, 1997, pp.729-734.

DOI: 10.1109/itsc.1997.660564

Google Scholar

[16] Weijin Liu, Yu-Jin Zhang. Real time object tracking using fused color and edge cues. ISSPA 2007. 9th International Symposium on Signal Processing and Its Applications, 2007, pp.1-4.

DOI: 10.1109/isspa.2007.4555530

Google Scholar

[17] Luo Di, Huang Xiangnian. Texture Analysis for Shadow Removing and Tracking of Vehicle in Traffic Monitoring System. IITAW '08. International Symposium on Intelligent Information Technology Application Workshops, 2008, pp.863-866.

DOI: 10.1109/iita.workshops.2008.169

Google Scholar

[18] Kai She, Bebis, G., Haisong Gu, Miller, R. Vehicle tracking using on-line fusion of color and shape features. The 7th International IEEE Conference on Intelligent Transportation Systems, 2004. Proceedings. pp.731-736.

DOI: 10.1109/itsc.2004.1398993

Google Scholar

[19] Fries C., Luettel T., Wuensche H. -J. Combining model- and template-based vehicle tracking for autonomous convoy driving. 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp.1022-1027.

DOI: 10.1109/ivs.2013.6629600

Google Scholar

[20] Lei Li, Zhurong Jia, Tingting Cheng, Xinchun Jia. Optimal Model Predictive Control for Path Tracking of Autonomous Vehicle. 2011 Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2011, pp.791-794.

DOI: 10.1109/icmtma.2011.481

Google Scholar

[21] Ya Liu, Yao Lu, Qingxuan Shi, Jianhua Ding. Optical Flow Based Urban Road Vehicle Tracking. 2013 9th International Conference on Computational Intelligence and Security (CIS), 2013, pp.391-395.

DOI: 10.1109/cis.2013.89

Google Scholar

[22] Inoue O., Ahn S., Ozawa S. Following vehicle detection using multiple cameras. ICVES 2008. IEEE International Conference on Vehicular Electronics and Safety, 2008, pp.79-83.

DOI: 10.1109/icves.2008.4640892

Google Scholar

[23] Z. Kalal, K. Mikolajczyk, and J. Matas, Forward-Backward Error: Automatic Detection of Tracking Failures, " Proc. 20th Int, l Conf. Pattern Recognition, pp.23-26, (2010).

DOI: 10.1109/icpr.2010.675

Google Scholar

[24] Z. Kalal, J. Matas, and K. Mikolajczyk, P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints, Proc. IEEE Conf. Computer Vision and Pattern Recognition, (2010).

DOI: 10.1109/cvpr.2010.5540231

Google Scholar

[25] Kiryari, N. and Gofman, Y. (1998). Detecting symmetry in grey level images: the global optimization approach. International journal of computer vision, Vol. 29 No. 1, pp.29-45.

Google Scholar

[26] Baoyou Zhao. Vehicle detection and tracking based on vision: [PhD thesis]. Wuhan: Wuhan University of Technology. 2009, 5, pp.39-41.

Google Scholar

[27] Hong Liu, Xing Liu. Robust hand tracking based on online learning and multi-cue flocks of features. 2013 20th IEEE International Conference on Image Processing (ICIP), 2013, pp.3725-3729.

DOI: 10.1109/icip.2013.6738768

Google Scholar

[28] J. Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm. Technical report, OpenCV Document, Intel Microprocessor Research Labs, (1999).

Google Scholar