[1]
S. Tunali, T. Akar, A.S. Ozcan, I. Kiran, A. Ozcan, Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by cephalosporium aphidicola, J. Sep. Purif. Technol. 47 (2006) 105-112.
DOI: 10.1016/j.seppur.2005.06.009
Google Scholar
[2]
C.L. Ake, K. Mayura, H. Huebner, G.R. Bratton, T.D. Phillips, Development of porous clay-based composites for the sorption of lead from water, J. J. Toxicol. Environ. Health A 63 (2001) 459-475.
DOI: 10.1080/152873901300343489
Google Scholar
[3]
A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater. 157 (2008), pp.220-229.
DOI: 10.1016/j.jhazmat.2008.01.024
Google Scholar
[4]
S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97 (2003), pp.219-243.
DOI: 10.1016/s0304-3894(02)00263-7
Google Scholar
[5]
G. Dursun and A.Y. Dursun, Adsorption of phenol from aqueous solution by using carbonized beet pulp, J. Hazard. Mater, 125 (2005), pp.175-182.
DOI: 10.1016/j.jhazmat.2005.05.023
Google Scholar
[6]
I.A.W. Tan, A. L Ahmad, and R.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium. kinetic and thermodynamic studies, J. Hazard. Mater. 154 (2008), pp.337-346.
DOI: 10.1016/j.jhazmat.2007.10.031
Google Scholar
[7]
A. Dabrowski, Z. Hubicki, P. Podkoscielny, and E. Robns, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchangemethod, J. Chemosphere. 56 (2004), pp.91-106.
DOI: 10.1016/j.chemosphere.2004.03.006
Google Scholar
[8]
Q.H. Fan, D.D. Shao, J. Hu, W.S. Wu and X.K. Wang, Comparison of Ni2+ sorption to bare and ACT-graft attapulgites: effect of pH, temperature and foreign ions, J. Surf. Sci. 602 (2008), pp.778-785.
DOI: 10.1016/j.susc.2007.12.007
Google Scholar
[9]
H. Potgieter, S.S. Potgieter-Vermaak, and P.D. Kalibantonga, Heavy metals removal from solution by attapulgite clay, J. Miner. Eng, 19 (2006), pp.463-470.
DOI: 10.1016/j.mineng.2005.07.004
Google Scholar
[10]
H. Chen and A.Q. Wang, Adsorption characteristics of Cu (II) from aqueous solution onto poly (acrylamide)-attapulgite composite, J. Hazard. Mater. 165 (2009), pp.223-231.
DOI: 10.1016/j.jhazmat.2008.09.097
Google Scholar
[11]
N. Frini-Srasra and E. Srasra, Acid treatment of south Tunisian attapulgite: removal of Zn(II) from aqueous and phosphoric acid solutions, Desalination. 250 (2010), pp.26-34.
DOI: 10.1016/j.desal.2009.01.043
Google Scholar
[12]
S.C. Peng, S.S. Wang, T.H. Chen, S.T. Jiang and C.H. Huang, Adsorption kinetics of methylene blue from aqueous solutions onto attapulgite, Acta Geologica Sinica, 80(2006), pp.236-242.
DOI: 10.1111/j.1755-6724.2006.tb00236.x
Google Scholar
[13]
L. Wang, J.P. Zhang and A.Q. Wang, Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite, Desalination. 266 (2011), pp.33-39.
DOI: 10.1016/j.desal.2010.07.065
Google Scholar
[14]
S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, J. Handlingar. 24 (1898), pp.1-39.
Google Scholar
[15]
T.H. Chen, H.B. Liu, J.H. Li, D. Chen, D.Y. Chang, D.J. Kong and R.L. Frost, Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on attapulgite: Change of surface acid-alkali properties, Chem. Eng. J. 166 (2011).
DOI: 10.1016/j.cej.2010.11.094
Google Scholar
[16]
Y.S. Ho and G. McKay, Pseudo-second order model for sorption processes, J. Process Biochem. 34 (1999), pp.451-465.
DOI: 10.1016/s0032-9592(98)00112-5
Google Scholar
[17]
C.L. Chen and X.K. Wang, Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes, J. Ind. Eng. Chem. Fundam. 45 (2006), pp.9144-9149.
DOI: 10.1021/ie060791z
Google Scholar
[18]
Y. Uu, W.B. Wang, A.Q. Wang, Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites, Desalination. 259 (2010), pp.258-264.
DOI: 10.1016/j.desal.2010.03.039
Google Scholar
[19]
C. Pang, Y.H. Liu, X.H. Cao, R. Hua, C.X. Wang and C.Q. Li, Adsorption removal of uranium from aqueous solution using chitosan-coated attapulgite, J. Radioanal Nucl Chem. 286 (2010), pp.185-193.
DOI: 10.1007/s10967-010-0635-0
Google Scholar
[20]
W.J. Weber Jr., J.C. Morriss, Kinetics of adsorption on carbon from solution, J. Sanit. Engng Div. ASCE. 89 (1963), pp.31-60.
Google Scholar
[21]
X.H. Zou, J.M. Pan, H.X. Ou, X. Wang, W. Guan, C.X. Li, Y.S. Yan, Y.Q. Duan, Adsorption removal of Cr (III) and Fe (III) from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics, Chem. Eng. J. 167 (2011).
DOI: 10.1016/j.cej.2010.12.009
Google Scholar
[22]
H. Chen, J. Zhang, C.L. Zhang, Q.Y. Yue, Y. Li and C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination. 252 (2010), pp.149-156.
DOI: 10.1016/j.desal.2009.10.010
Google Scholar
[23]
M. Mazzotti, Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm, J. Chromatogr. 1126 (2006), pp.311-322.
DOI: 10.1016/j.chroma.2006.06.022
Google Scholar
[24]
S.J. Allen, G. Mckay and J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004), pp.322-333.
DOI: 10.1016/j.jcis.2004.08.078
Google Scholar
[25]
I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc, 40 (1918), p.1361–1403.
DOI: 10.1021/ja02242a004
Google Scholar
[26]
L. Chen and X. Gao, Thermodynamic study of Th(Ⅳ) sorption on attapulgite, Applied Radiation and Isotopes, 67 (2009), pp.1-6.
DOI: 10.1016/j.apradiso.2008.05.014
Google Scholar