Adsorption of Zn(II) from Aqueous Solution by Attapulgite

Article Preview

Abstract:

The adsorption behavior of Zn (II) by attapulgite were studied in the paper, The effects of adsorbent dose. Contact time, ionic strength and temperature on the adsorption were investigated. The maximum adsorption capacity is 4.129 mg.g-1 at 333 K. The kinetic study indicated that the adsorption was a pseudo-second-order process. The adsorption was well fitted by the Langmuir adsorption isotherm model. The results indicated that the sorption of Zn (II) by attapulgite was a spontaneous process, and the sorption was endothermic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-155

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Tunali, T. Akar, A.S. Ozcan, I. Kiran, A. Ozcan, Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by cephalosporium aphidicola, J. Sep. Purif. Technol. 47 (2006) 105-112.

DOI: 10.1016/j.seppur.2005.06.009

Google Scholar

[2] C.L. Ake, K. Mayura, H. Huebner, G.R. Bratton, T.D. Phillips, Development of porous clay-based composites for the sorption of lead from water, J. J. Toxicol. Environ. Health A 63 (2001) 459-475.

DOI: 10.1080/152873901300343489

Google Scholar

[3] A. Demirbas, Heavy metal adsorption onto agro-based waste materials: a review, J. Hazard. Mater. 157 (2008), pp.220-229.

DOI: 10.1016/j.jhazmat.2008.01.024

Google Scholar

[4] S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97 (2003), pp.219-243.

DOI: 10.1016/s0304-3894(02)00263-7

Google Scholar

[5] G. Dursun and A.Y. Dursun, Adsorption of phenol from aqueous solution by using carbonized beet pulp, J. Hazard. Mater, 125 (2005), pp.175-182.

DOI: 10.1016/j.jhazmat.2005.05.023

Google Scholar

[6] I.A.W. Tan, A. L Ahmad, and R.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium. kinetic and thermodynamic studies, J. Hazard. Mater. 154 (2008), pp.337-346.

DOI: 10.1016/j.jhazmat.2007.10.031

Google Scholar

[7] A. Dabrowski, Z. Hubicki, P. Podkoscielny, and E. Robns, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchangemethod, J. Chemosphere. 56 (2004), pp.91-106.

DOI: 10.1016/j.chemosphere.2004.03.006

Google Scholar

[8] Q.H. Fan, D.D. Shao, J. Hu, W.S. Wu and X.K. Wang, Comparison of Ni2+ sorption to bare and ACT-graft attapulgites: effect of pH, temperature and foreign ions, J. Surf. Sci. 602 (2008), pp.778-785.

DOI: 10.1016/j.susc.2007.12.007

Google Scholar

[9] H. Potgieter, S.S. Potgieter-Vermaak, and P.D. Kalibantonga, Heavy metals removal from solution by attapulgite clay, J. Miner. Eng, 19 (2006), pp.463-470.

DOI: 10.1016/j.mineng.2005.07.004

Google Scholar

[10] H. Chen and A.Q. Wang, Adsorption characteristics of Cu (II) from aqueous solution onto poly (acrylamide)-attapulgite composite, J. Hazard. Mater. 165 (2009), pp.223-231.

DOI: 10.1016/j.jhazmat.2008.09.097

Google Scholar

[11] N. Frini-Srasra and E. Srasra, Acid treatment of south Tunisian attapulgite: removal of Zn(II) from aqueous and phosphoric acid solutions, Desalination. 250 (2010), pp.26-34.

DOI: 10.1016/j.desal.2009.01.043

Google Scholar

[12] S.C. Peng, S.S. Wang, T.H. Chen, S.T. Jiang and C.H. Huang, Adsorption kinetics of methylene blue from aqueous solutions onto attapulgite, Acta Geologica Sinica, 80(2006), pp.236-242.

DOI: 10.1111/j.1755-6724.2006.tb00236.x

Google Scholar

[13] L. Wang, J.P. Zhang and A.Q. Wang, Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite, Desalination. 266 (2011), pp.33-39.

DOI: 10.1016/j.desal.2010.07.065

Google Scholar

[14] S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens, J. Handlingar. 24 (1898), pp.1-39.

Google Scholar

[15] T.H. Chen, H.B. Liu, J.H. Li, D. Chen, D.Y. Chang, D.J. Kong and R.L. Frost, Effect of thermal treatment on adsorption-desorption of ammonia and sulfur dioxide on attapulgite: Change of surface acid-alkali properties, Chem. Eng. J. 166 (2011).

DOI: 10.1016/j.cej.2010.11.094

Google Scholar

[16] Y.S. Ho and G. McKay, Pseudo-second order model for sorption processes, J. Process Biochem. 34 (1999), pp.451-465.

DOI: 10.1016/s0032-9592(98)00112-5

Google Scholar

[17] C.L. Chen and X.K. Wang, Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes, J. Ind. Eng. Chem. Fundam. 45 (2006), pp.9144-9149.

DOI: 10.1021/ie060791z

Google Scholar

[18] Y. Uu, W.B. Wang, A.Q. Wang, Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites, Desalination. 259 (2010), pp.258-264.

DOI: 10.1016/j.desal.2010.03.039

Google Scholar

[19] C. Pang, Y.H. Liu, X.H. Cao, R. Hua, C.X. Wang and C.Q. Li, Adsorption removal of uranium from aqueous solution using chitosan-coated attapulgite, J. Radioanal Nucl Chem. 286 (2010), pp.185-193.

DOI: 10.1007/s10967-010-0635-0

Google Scholar

[20] W.J. Weber Jr., J.C. Morriss, Kinetics of adsorption on carbon from solution, J. Sanit. Engng Div. ASCE. 89 (1963), pp.31-60.

Google Scholar

[21] X.H. Zou, J.M. Pan, H.X. Ou, X. Wang, W. Guan, C.X. Li, Y.S. Yan, Y.Q. Duan, Adsorption removal of Cr (III) and Fe (III) from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics, Chem. Eng. J. 167 (2011).

DOI: 10.1016/j.cej.2010.12.009

Google Scholar

[22] H. Chen, J. Zhang, C.L. Zhang, Q.Y. Yue, Y. Li and C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination. 252 (2010), pp.149-156.

DOI: 10.1016/j.desal.2009.10.010

Google Scholar

[23] M. Mazzotti, Equilibrium theory based design of simulated moving bed processes for a generalized Langmuir isotherm, J. Chromatogr. 1126 (2006), pp.311-322.

DOI: 10.1016/j.chroma.2006.06.022

Google Scholar

[24] S.J. Allen, G. Mckay and J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004), pp.322-333.

DOI: 10.1016/j.jcis.2004.08.078

Google Scholar

[25] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc, 40 (1918), p.1361–1403.

DOI: 10.1021/ja02242a004

Google Scholar

[26] L. Chen and X. Gao, Thermodynamic study of Th(Ⅳ) sorption on attapulgite, Applied Radiation and Isotopes, 67 (2009), pp.1-6.

DOI: 10.1016/j.apradiso.2008.05.014

Google Scholar