[1]
Zhang, S. H., L. L. Cai, et al. (2008). NOx removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter., Environmental Science & Technology 42(10): 3814-3820.
DOI: 10.1021/es800200g
Google Scholar
[2]
THASAN RAJU, SANG JOON CHUNG, AND IL SHIK MOON (2008). Novel Process for Simultaneous Removal of NOx and SO2 from Simulated Flue Gas by Using a Sustainable Ag(I)/Ag(II) Redox Mediator., Environmental Science & Technology 42(19): 7464-7469.
DOI: 10.1021/es801174k
Google Scholar
[3]
M. Huuhtanen, T. Maunula and R.L. Keiski (2005). Reaction mechanism for C3H6-SCR of NO over a Pt loaded ZSM-5 zeolite catalyst., Studies in Surface Science and Catalysis, 158(2): 1867-1874.
DOI: 10.1016/s0167-2991(05)80549-x
Google Scholar
[4]
Yvonne Traa, Beate Burger and Jens Weitkamp(1999). Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons., Microporous and Mesoporous Materials 30(1): 3-41.
DOI: 10.1016/s1387-1811(99)00030-x
Google Scholar
[5]
Atsushi Satsuma, Ken-ichi Shimizu(2003). In situ FT/IR study of selective catalytic reduction of NO over alumina-based catalysts., Progress in Energy and Combustion Science, 29(1): 71-84.
DOI: 10.1016/s0360-1285(02)00033-3
Google Scholar
[6]
Resini C, Montanari T, Nappi L, Bagnasco G, Turco M, Busca G, Bregani F, Notaro M, Rocchini G (2003).
Google Scholar
[7]
Shibata J, Shimizu K, Satokawa S, Satsuma A, Hattori T (2003).
Google Scholar
[8]
Xu, W., H. L. Tong, et al. (2008). Catalytic reduction of nitric oxide by methane over CaO catalyst., Korean Journal of Chemical Engineering 25(1): 53-58.
DOI: 10.1007/s11814-008-0009-2
Google Scholar
[9]
Park, J.H., Park, H.J., Baik J.H., Nam I.S., Shin, C.H., Leec, J.H., Cho, B. K. and Oh, S.H. (2006).
Google Scholar
[10]
Ren, L., Zhang T., Tang, J.W., Zhao, J.F., Li, N., and Lin, L.W. (2003).
Google Scholar
[11]
Izquierdo, M. T. and B. Rubio (1998). Influence of char physicochemical features on the flue gas nitric oxide reduction with chars., Environmental Science & Technology 32(24): 4017-4022.
DOI: 10.1021/es980218+
Google Scholar
[12]
Sun, Q., Zhu, A.M., Yang, X.F., Niu, J.H., Xu Y., Song, Z.M., and Liu, J. (2005). Plasma-catalytic reduction of NO with C2H4 in the presence of excess oxygen., Chinese Chemical Letters 16(6): 839-842.
Google Scholar
[13]
Niu, J.H., Zhang, Z.H., Liu, D.P., Wang, Q. (2008). Low-temperature plasma-catalytic reduction of NOx by C2H2 in the presence of excess oxygen., Plasma Science and Technology 10(4): 466-470.
Google Scholar
[14]
Roy, S., Hegde, M.S. and Madras, G. (2009) Catalysis for NOx abatement., Applied Energy, 86(11): 2283-2297.
DOI: 10.1016/j.apenergy.2009.03.022
Google Scholar
[15]
R.K. Herz, Dynamic behavior of automotive catalysts. 1. Catalyst oxidation and reduction, Ind Eng Chem Prod Res Dev 20 (1981), p.451–457.
DOI: 10.1021/i300003a007
Google Scholar