A Study on the Removal of NOx in Simulated Flue Gas Using Urea/Potassium Permanganate Solution as Absorbent

Article Preview

Abstract:

The removal of NOx in simulated flue gas was studied using urea/ potassium permanganate solution with different concentrations as absorbent. Experiments were carried out in a packed absorption reactor filled with steel pall rings at about 70°C. The effect of amount of urea, amount of potassium permanganate, effective height of absorption solution and addition of SO2 on denitrification efficiency was examined. The results show that a high removal efficiency of NOx can be attained using urea/ potassium permanganate solution process, In the solution of 5% urea and 600mg/L potassium permanganate, the removal efficency of NOx could be achieved 91.5%. Increasing the amount of potassium permanganate and the effective height of absorption solution could improve denitrification efficiency remarkably. Whereas, no obvious improvement in NOx removal efficiency was observed when increasing the amount of urea without potassium permanganate. The adding of SO2 resulted in a decline of denitrification efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2797-2805

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.S. Mok, I.S. Nam, Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide, Chem. Eng. 85 (2002) 87–97.

DOI: 10.1016/s1385-8947(01)00221-2

Google Scholar

[2] J.N. Armor, Catalytic removal of nitrogen oxides: where are the opportunities? Catal. Today. 26 (1995) 99-105.

DOI: 10.1016/0920-5861(95)00132-y

Google Scholar

[3] M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with NH3, Catal. Today. 111 (2006) 236-241.

DOI: 10.1016/j.cattod.2005.10.032

Google Scholar

[4] J. Li, Y. Zhu, R. Ke, J. Hao, Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions, Appl. Catal. B-Environ. 80 (2008) 202-213.

DOI: 10.1016/j.apcatb.2007.08.016

Google Scholar

[5] H.H. Phil, M.P. Reddy, P.A. Kumar, L.K. Ju, J.S. Hyo, SO2 resistant antimony promoted V2O/TiO2 catalyst for NH3-SCR of NOx at low temperatures, Appl. Catal. B-Environ. 78 (2008) 301-308.

DOI: 10.1016/j.apcatb.2007.09.012

Google Scholar

[6] K.Q. Tran, P. Kilpinen, N. Kumar, In-situ catalytic abatement of NOx during fluidized bed combustion—A literature study, Appl. Catal. B-Environ. 78 (2008) 129-138.

DOI: 10.1016/j.apcatb.2007.09.004

Google Scholar

[7] Z.B. Wu et al, Kinetic study on regeneration of Fe(II)EDTA in the wet process of NO removal, Chem. Eng. J. (2007), doi: 10. 1016/j. cej. 2007. 09. 025.

Google Scholar

[8] Z. Wu et al., Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low temperature, Catal. Commun. (2008), doi: 10. 1016/j. catcom. 2008. 05. 001.

DOI: 10.1016/j.catcom.2008.05.001

Google Scholar

[9] J. Li, J. Chen, R. Ke, C. Luo, J. Hao, Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts, Catal. Commun. 8 (2007) 1896-(1900).

DOI: 10.1016/j.catcom.2007.03.007

Google Scholar

[10] R. Ke, J. Li, X. Liang, J. Hao, Novel promoting effect of SO2 on the selective catalytic reduction of NOx by ammonia over Co3O4 catalyst, Catal. Commun. 8 (2007) 2096-(2099).

DOI: 10.1016/j.catcom.2007.03.033

Google Scholar

[11] M.J. La´zaro , M.E. Ga´lvez, C. Ruiz, R. Juan, R. Moliner, Vanadium loaded carbon-based catalysts for the reduction of nitric oxide, Appl. Catal. B-Environ. 68 (2006) 130-138.

DOI: 10.1016/j.apcatb.2006.07.025

Google Scholar

[12] C.H. Tsai, H.H. Yang, C.J.G. Jou, H.M. Lee, Reducing nitric oxide intonitrogen via a radio-frequency discharge, Hazard. Mater. 143 (2007) 409–414.

DOI: 10.1016/j.jhazmat.2006.09.042

Google Scholar

[13] N.A.S. Amin, C.M. Chong, SCR of NO with C3H6 in the presence of excess O2 over Cu/Ag/CeO2–ZrO2 catalyst, Chem. Eng. J. 113 (2005) 13–25.

DOI: 10.1016/j.cej.2005.08.001

Google Scholar

[14] Khanh-Quang Tran, Pia Kilpinen, Narendra Kumar, In-situ catalytic abatement of NOx during fluidized bed combustion—A literature study, Appl. Catal. B-Environ. 78 (2008) 129-138.

DOI: 10.1016/j.apcatb.2007.09.004

Google Scholar

[15] C. L. Yang, H. Shaw, H. D. Perlmutter, Absorption of NO promoted by strong oxidizing agents: 1. Inorganic oxychlorites in nitric acid, Chem. Eng. Comm. 143 (1996) 23-38.

DOI: 10.1080/00986449608936432

Google Scholar

[16] K.K. Baveja, D.S. Rao, M.K. Sarkar, Kinetics of absorption of nitric oxide in hydrogen peroxide solutions, J Chem. Eng. Japan. 12 (1979) 322–325.

DOI: 10.1252/jcej.12.322

Google Scholar

[17] E. Sada, H. Kumazawa, N. Hayakawa, I. Kudo, T. Kondo, Absorption of NO in aqueous solutions of KMnO4, Chem. Eng. Sci. 32 (1977) 1171–1175.

DOI: 10.1016/0009-2509(77)80049-3

Google Scholar

[18] C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in an alkaline solution of KMnO4, Chem. Eng. Technol. 20 (1997) 396–402.

DOI: 10.1002/ceat.270200607

Google Scholar

[19] H. Chu, S.Y. Li, T.W. Chien, The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO4/NaOH solutions, J. Environ. Sci. Health. A33 (1998) 801–827.

DOI: 10.1080/10934529809376763

Google Scholar

[20] H. Chu, T.W. Chien, S.Y. Li, Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions, The Science of the Total Environment. 275 (2001) 127-135.

DOI: 10.1016/s0048-9697(00)00860-3

Google Scholar

[21] E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption of NO in aqueous mixed solutions of NaClO2 and NaOH, Chem. Eng. Sci. 33 (1978a) 315–318.

DOI: 10.1016/0009-2509(78)80088-8

Google Scholar

[22] E. Sada, H. Kumazawa, Y. Yamanka, Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide. J. Chem. Eng. Japan. 11 (1978b) 276–282.

DOI: 10.1252/jcej.11.276

Google Scholar

[23] E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption of lean NOx in aqueous solutions of NaClO2 and NaOH, Ind. Eng. Chem. Process. Des. Dev. 18 (1979a) 275–278.

DOI: 10.1021/i260070a017

Google Scholar

[24] E. Sada, H. Kumazawa, Y. Yamanka, T. Kondo, Absorption of lean NO in aqueous slurries of Ca(OH)2 with NaClO2 or Mg(OH)2 with NaClO2, Chem. Eng. Sci. 34 (1979b) 719–724.

DOI: 10.1016/0009-2509(79)85119-2

Google Scholar

[25] C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in an aqueous solution of NaClO2, Chem. Eng. Technol. 21 (1998) 61–70.

DOI: 10.1002/(sici)1521-4125(199801)21:1<61::aid-ceat61>3.0.co;2-0

Google Scholar

[26] C.L. Yang, H. Shaw, Aqueous absorption of NOx induced by sodium chlorite oxidation in the presence of sulfur dioxide, Environ. Prog. 17 (1998) 80–85.

DOI: 10.1002/ep.670170213

Google Scholar

[27] H.W. Hsu, C.J. Lee, K.S. Chou, Absorption of NO by NaClO2 solution: performance characteristics, Chem. Eng. Comm. 170 (1998) 67–81.

Google Scholar

[28] Y.G. Adewuyi, X. He, H. Shaw, W. Lolertpihop, Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite, Chem. Eng. Comm. 174 (1999) 21–51.

DOI: 10.1080/00986449908912788

Google Scholar

[29] T.W. Chien, H. Chu, Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution, J. Hazard. Mater. B80 (2000) 43–57.

DOI: 10.1016/s0304-3894(00)00274-0

Google Scholar

[30] H. Chu, T.W. Chien, B.W. Twu, The absorption kinetics of NO in NaClO2/NaOH solutions. J. Hazard. Mater. B84 (2001) 241–252.

DOI: 10.1016/s0304-3894(01)00215-1

Google Scholar

[31] H. Chu, T.W. Chien, B.W. Twu, Simultaneous absorption of SO2 and NO in a stirred tank reactor with NaClO2/NaOH solutions, Water. Air. Soil. Pollution. 143 (2003) 337-350.

DOI: 10.1023/a:1022838623521

Google Scholar

[32] B.R. Deshwal, S.H. Lee, J.H. Jung, B.H. Shon, H.K. Lee, Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution, J. Environ. Sci. 20(2008)33-38.

DOI: 10.1016/s1001-0742(08)60004-2

Google Scholar

[33] D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater. B135 (2006) 412–417.

DOI: 10.1016/j.jhazmat.2005.12.001

Google Scholar

[34] B.R. Deshwal, D.S. Jin, S.H. Lee, S.H. Moon, J.H. Jung, H.K. Lee, Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor, J. Hazard. Mater. 150 (2008) 649–655.

DOI: 10.1016/j.jhazmat.2007.05.016

Google Scholar

[35] P. v. d. Maas, P. v. d. Brink, S. Utomo, B. Klapwijk, P. Lens, NO Removal in Continuous BioDeNOx Reactors: Fe(II)EDTA2- Regeneration, Biomass Growth, and EDTA Degradation, Biotechnol. Bioeng. 94 (2006) 575-584.

DOI: 10.1002/bit.20859

Google Scholar

[36] W. Li, C. Wu, S. Zhang, K. Shao, Y. Shi, Evaluation of Microbial Reduction of Fe(III)EDTA in a Chemical Absorption-Biological Reduction Integrated NOx Removal System, Environ. Sci. Technol. 41 (2007) 639-644.

DOI: 10.1021/es061757e

Google Scholar

[37] S. Zhang, W. Li, C. Wu, H. Chen, Y. Shi, Reduction of Fe (II)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution, Appl. Microbiol. Biotechnol. 76 (2007) 1181–1187.

DOI: 10.1007/s00253-007-1078-6

Google Scholar

[38] Maas, P. v. d. et al., Acceleration of the Fe (III)EDTA- reduction rate in BioDe NOx reactors by dosing electron mediating compounds, Chemosphere (2008), doi: 10. 1016/j. chemosphere. 2008. 04. 043.

DOI: 10.1016/j.chemosphere.2008.04.043

Google Scholar

[39] X. Xu, S.G. Chang, Removing nitric oxide from flue gas using iron(II)citrate chelate absorption with microbial regeneration, Chemosphere. 67(2007)1628–1636.

DOI: 10.1016/j.chemosphere.2006.11.015

Google Scholar

[40] X. Long, Z. Xin, M. Chen, W. Xiao, W. Yuan, Nitric oxide absorption into cobalt ethylenediamine solution, Sep. Purif. Technol. 55 (2007) 226–231.

DOI: 10.1016/j.seppur.2006.12.018

Google Scholar