[1]
Y.S. Mok, I.S. Nam, Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide, Chem. Eng. 85 (2002) 87–97.
DOI: 10.1016/s1385-8947(01)00221-2
Google Scholar
[2]
J.N. Armor, Catalytic removal of nitrogen oxides: where are the opportunities? Catal. Today. 26 (1995) 99-105.
DOI: 10.1016/0920-5861(95)00132-y
Google Scholar
[3]
M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with NH3, Catal. Today. 111 (2006) 236-241.
DOI: 10.1016/j.cattod.2005.10.032
Google Scholar
[4]
J. Li, Y. Zhu, R. Ke, J. Hao, Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions, Appl. Catal. B-Environ. 80 (2008) 202-213.
DOI: 10.1016/j.apcatb.2007.08.016
Google Scholar
[5]
H.H. Phil, M.P. Reddy, P.A. Kumar, L.K. Ju, J.S. Hyo, SO2 resistant antimony promoted V2O/TiO2 catalyst for NH3-SCR of NOx at low temperatures, Appl. Catal. B-Environ. 78 (2008) 301-308.
DOI: 10.1016/j.apcatb.2007.09.012
Google Scholar
[6]
K.Q. Tran, P. Kilpinen, N. Kumar, In-situ catalytic abatement of NOx during fluidized bed combustion—A literature study, Appl. Catal. B-Environ. 78 (2008) 129-138.
DOI: 10.1016/j.apcatb.2007.09.004
Google Scholar
[7]
Z.B. Wu et al, Kinetic study on regeneration of Fe(II)EDTA in the wet process of NO removal, Chem. Eng. J. (2007), doi: 10. 1016/j. cej. 2007. 09. 025.
Google Scholar
[8]
Z. Wu et al., Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low temperature, Catal. Commun. (2008), doi: 10. 1016/j. catcom. 2008. 05. 001.
DOI: 10.1016/j.catcom.2008.05.001
Google Scholar
[9]
J. Li, J. Chen, R. Ke, C. Luo, J. Hao, Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts, Catal. Commun. 8 (2007) 1896-(1900).
DOI: 10.1016/j.catcom.2007.03.007
Google Scholar
[10]
R. Ke, J. Li, X. Liang, J. Hao, Novel promoting effect of SO2 on the selective catalytic reduction of NOx by ammonia over Co3O4 catalyst, Catal. Commun. 8 (2007) 2096-(2099).
DOI: 10.1016/j.catcom.2007.03.033
Google Scholar
[11]
M.J. La´zaro , M.E. Ga´lvez, C. Ruiz, R. Juan, R. Moliner, Vanadium loaded carbon-based catalysts for the reduction of nitric oxide, Appl. Catal. B-Environ. 68 (2006) 130-138.
DOI: 10.1016/j.apcatb.2006.07.025
Google Scholar
[12]
C.H. Tsai, H.H. Yang, C.J.G. Jou, H.M. Lee, Reducing nitric oxide intonitrogen via a radio-frequency discharge, Hazard. Mater. 143 (2007) 409–414.
DOI: 10.1016/j.jhazmat.2006.09.042
Google Scholar
[13]
N.A.S. Amin, C.M. Chong, SCR of NO with C3H6 in the presence of excess O2 over Cu/Ag/CeO2–ZrO2 catalyst, Chem. Eng. J. 113 (2005) 13–25.
DOI: 10.1016/j.cej.2005.08.001
Google Scholar
[14]
Khanh-Quang Tran, Pia Kilpinen, Narendra Kumar, In-situ catalytic abatement of NOx during fluidized bed combustion—A literature study, Appl. Catal. B-Environ. 78 (2008) 129-138.
DOI: 10.1016/j.apcatb.2007.09.004
Google Scholar
[15]
C. L. Yang, H. Shaw, H. D. Perlmutter, Absorption of NO promoted by strong oxidizing agents: 1. Inorganic oxychlorites in nitric acid, Chem. Eng. Comm. 143 (1996) 23-38.
DOI: 10.1080/00986449608936432
Google Scholar
[16]
K.K. Baveja, D.S. Rao, M.K. Sarkar, Kinetics of absorption of nitric oxide in hydrogen peroxide solutions, J Chem. Eng. Japan. 12 (1979) 322–325.
DOI: 10.1252/jcej.12.322
Google Scholar
[17]
E. Sada, H. Kumazawa, N. Hayakawa, I. Kudo, T. Kondo, Absorption of NO in aqueous solutions of KMnO4, Chem. Eng. Sci. 32 (1977) 1171–1175.
DOI: 10.1016/0009-2509(77)80049-3
Google Scholar
[18]
C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in an alkaline solution of KMnO4, Chem. Eng. Technol. 20 (1997) 396–402.
DOI: 10.1002/ceat.270200607
Google Scholar
[19]
H. Chu, S.Y. Li, T.W. Chien, The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO4/NaOH solutions, J. Environ. Sci. Health. A33 (1998) 801–827.
DOI: 10.1080/10934529809376763
Google Scholar
[20]
H. Chu, T.W. Chien, S.Y. Li, Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions, The Science of the Total Environment. 275 (2001) 127-135.
DOI: 10.1016/s0048-9697(00)00860-3
Google Scholar
[21]
E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption of NO in aqueous mixed solutions of NaClO2 and NaOH, Chem. Eng. Sci. 33 (1978a) 315–318.
DOI: 10.1016/0009-2509(78)80088-8
Google Scholar
[22]
E. Sada, H. Kumazawa, Y. Yamanka, Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide. J. Chem. Eng. Japan. 11 (1978b) 276–282.
DOI: 10.1252/jcej.11.276
Google Scholar
[23]
E. Sada, H. Kumazawa, I. Kudo, T. Kondo, Absorption of lean NOx in aqueous solutions of NaClO2 and NaOH, Ind. Eng. Chem. Process. Des. Dev. 18 (1979a) 275–278.
DOI: 10.1021/i260070a017
Google Scholar
[24]
E. Sada, H. Kumazawa, Y. Yamanka, T. Kondo, Absorption of lean NO in aqueous slurries of Ca(OH)2 with NaClO2 or Mg(OH)2 with NaClO2, Chem. Eng. Sci. 34 (1979b) 719–724.
DOI: 10.1016/0009-2509(79)85119-2
Google Scholar
[25]
C. Brogen, H.T. Karlsson, I. Bjerle, Absorption of NO in an aqueous solution of NaClO2, Chem. Eng. Technol. 21 (1998) 61–70.
DOI: 10.1002/(sici)1521-4125(199801)21:1<61::aid-ceat61>3.0.co;2-0
Google Scholar
[26]
C.L. Yang, H. Shaw, Aqueous absorption of NOx induced by sodium chlorite oxidation in the presence of sulfur dioxide, Environ. Prog. 17 (1998) 80–85.
DOI: 10.1002/ep.670170213
Google Scholar
[27]
H.W. Hsu, C.J. Lee, K.S. Chou, Absorption of NO by NaClO2 solution: performance characteristics, Chem. Eng. Comm. 170 (1998) 67–81.
Google Scholar
[28]
Y.G. Adewuyi, X. He, H. Shaw, W. Lolertpihop, Simultaneous absorption and oxidation of NO and SO2 by aqueous solutions of sodium chlorite, Chem. Eng. Comm. 174 (1999) 21–51.
DOI: 10.1080/00986449908912788
Google Scholar
[29]
T.W. Chien, H. Chu, Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution, J. Hazard. Mater. B80 (2000) 43–57.
DOI: 10.1016/s0304-3894(00)00274-0
Google Scholar
[30]
H. Chu, T.W. Chien, B.W. Twu, The absorption kinetics of NO in NaClO2/NaOH solutions. J. Hazard. Mater. B84 (2001) 241–252.
DOI: 10.1016/s0304-3894(01)00215-1
Google Scholar
[31]
H. Chu, T.W. Chien, B.W. Twu, Simultaneous absorption of SO2 and NO in a stirred tank reactor with NaClO2/NaOH solutions, Water. Air. Soil. Pollution. 143 (2003) 337-350.
DOI: 10.1023/a:1022838623521
Google Scholar
[32]
B.R. Deshwal, S.H. Lee, J.H. Jung, B.H. Shon, H.K. Lee, Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution, J. Environ. Sci. 20(2008)33-38.
DOI: 10.1016/s1001-0742(08)60004-2
Google Scholar
[33]
D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, Simultaneous removal of SO2 and NO by wet scrubbing using aqueous chlorine dioxide solution. J. Hazard. Mater. B135 (2006) 412–417.
DOI: 10.1016/j.jhazmat.2005.12.001
Google Scholar
[34]
B.R. Deshwal, D.S. Jin, S.H. Lee, S.H. Moon, J.H. Jung, H.K. Lee, Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor, J. Hazard. Mater. 150 (2008) 649–655.
DOI: 10.1016/j.jhazmat.2007.05.016
Google Scholar
[35]
P. v. d. Maas, P. v. d. Brink, S. Utomo, B. Klapwijk, P. Lens, NO Removal in Continuous BioDeNOx Reactors: Fe(II)EDTA2- Regeneration, Biomass Growth, and EDTA Degradation, Biotechnol. Bioeng. 94 (2006) 575-584.
DOI: 10.1002/bit.20859
Google Scholar
[36]
W. Li, C. Wu, S. Zhang, K. Shao, Y. Shi, Evaluation of Microbial Reduction of Fe(III)EDTA in a Chemical Absorption-Biological Reduction Integrated NOx Removal System, Environ. Sci. Technol. 41 (2007) 639-644.
DOI: 10.1021/es061757e
Google Scholar
[37]
S. Zhang, W. Li, C. Wu, H. Chen, Y. Shi, Reduction of Fe (II)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution, Appl. Microbiol. Biotechnol. 76 (2007) 1181–1187.
DOI: 10.1007/s00253-007-1078-6
Google Scholar
[38]
Maas, P. v. d. et al., Acceleration of the Fe (III)EDTA- reduction rate in BioDe NOx reactors by dosing electron mediating compounds, Chemosphere (2008), doi: 10. 1016/j. chemosphere. 2008. 04. 043.
DOI: 10.1016/j.chemosphere.2008.04.043
Google Scholar
[39]
X. Xu, S.G. Chang, Removing nitric oxide from flue gas using iron(II)citrate chelate absorption with microbial regeneration, Chemosphere. 67(2007)1628–1636.
DOI: 10.1016/j.chemosphere.2006.11.015
Google Scholar
[40]
X. Long, Z. Xin, M. Chen, W. Xiao, W. Yuan, Nitric oxide absorption into cobalt ethylenediamine solution, Sep. Purif. Technol. 55 (2007) 226–231.
DOI: 10.1016/j.seppur.2006.12.018
Google Scholar