[1]
Rouse, H., Discharge characteristics of the free overfall. Civil Engineering (1936), ASCE, 6(4), 257-260.
Google Scholar
[2]
Rand W., Flow geometry at straight drop spillways. Journal of Hydraulic Engineering, (1955), ASCE 81, 1-13.
Google Scholar
[3]
Ferro, V., Flow measurement with rectangular free overfall. Journal of Irrigation and Drainage Engineering, (1992), 118(6), 956-964.
DOI: 10.1061/(asce)0733-9437(1992)118:6(956)
Google Scholar
[4]
Chamani, M. R., Beirami, M.K., Flow characteristics at drop. Journal of Hydraulic Engineering. (2002), ASCE, 128(8), 788-791.
DOI: 10.1061/(asce)0733-9429(2002)128:8(788)
Google Scholar
[5]
Hong Y.M., Huang H.S., and Wan S., Drop characteristics of free-falling nappe for aerated straight-drop spillway, Journal of Hydraulic Research, (2010), 48(1), 125 - 129.
DOI: 10.1080/00221680903568683
Google Scholar
[6]
Finnie, G. R., Wittig G. E. & Desharnais, J-M., A comparison of software effort estimation techniques: Using function points with neural networks, case-based reasoning and regression models. Journal of Systems and Software, (1997), 281-289.
DOI: 10.1016/s0164-1212(97)00055-1
Google Scholar
[7]
Raikar, R.V., Kumar, D. N., & Dey S., End depth computation in inverted semicircular channels using ANNs. Flow Measurement and Instrumentation, (2004), 15, 285–293.
DOI: 10.1016/j.flowmeasinst.2004.06.003
Google Scholar
[8]
Baylar, A., Hanbay, D., & Ozpolat, E., An expert system for predicting aeration performance of weirs by using ANFIS. Expert Systems with Applications, (2008), 35, 1214–1222.
DOI: 10.1016/j.eswa.2007.08.019
Google Scholar
[9]
Chanson, H., Hydraulic design of stepped cascades, channels, weirs and spillways. Pergamon, Oxford, UK. (1995).
Google Scholar
[10]
Kantardzic M., Data mining-concepts, models, methods, and algorithms, IEEE, Wiley-interscience, USA, (2003), 196-217.
Google Scholar
[11]
Howard D., and Mark B., Neural network toolbox- for use with MATLAB. The MathWorks, Inc. (2004).
Google Scholar