Synthesis of Several Micrometer-Size Cu Particles by a Green Wet Reduction Method

Article Preview

Abstract:

Several micrmeter-size Cu powders were synthesized by a simple and green wet-chemical process. Moreover, changes in particle size are examined with different synthesis temperatures and amounts of gelatin reducing agent. All powder samples synthesized in this study were indexed as a Cu phase despite the synthesis was performed in air. The particle size decreased with increasing the gelatin content in principle, indicating that gelatin is an effective agent in suppressing aggregation between synthesized particles. The smallest average particle size was 1.53 μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-213

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wu: Mater. Lett., Vol. 61 (2007), p.1125.

Google Scholar

[2] F. Fievet, F. Fievet-Vincent, J. P. Lagier, B. Dumont and M. Figlarz: J. Mater. Chem. Vol. 3 (1993), p.627.

DOI: 10.1039/jm9930300627

Google Scholar

[3] A. Sinha and B. P. Sharma: Mater. Res. Bull. Vol. 37 (2002), p.407.

Google Scholar

[4] Y. -S. Lin and S. -S. Chiu: Polym. Eng. Sci. Vol. 44 (2004), p. (2019).

Google Scholar

[5] D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park: J. Colloid Interface Sci. Vol. 364 (2011), p.574.

Google Scholar

[6] X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang: Mater. Lett. Vol. 57 (2003), p.3987.

Google Scholar

[7] J. Zhao, D. M. Zhang and J. Zhao: J. Solid State Chem. Vol. 184 (2011), p.2339.

Google Scholar

[8] S. -S. Chee and J. -H. Lee: J. Mater. Chem. C Vol. 2 (2014), p.5372.

Google Scholar

[9] N. Cabrera and N. F. Mott: Rep. Prog. Phys. Vol. 12 (1949), p.164.

Google Scholar

[10] A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun: J. Phys. Chem. C Vol. 117 (2013), p.3093.

Google Scholar

[11] M. Grouchko, A. Kamyshny and S. Magdassi: J. Mater. Chem. Vol. 117 (2009), p.3057.

Google Scholar

[12] P. Dixit, C. W. Tan, L. Xu, N. Lin, J. Miao, J. H. L. Pang, P. Backus and R. Preisser: J. Micromech. Microeng. Vol. 17 (2007), p.1078.

Google Scholar

[13] B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim: J. Colloid Interface Sci. Vol. 311 (2007), p.417.

Google Scholar

[14] T. Ishizaki and R. Watanabe: J. Mater. Chem. Vol. 22 (2012), p.25198.

Google Scholar

[15] C. Wu, B. P. Mosher and T. Zeng: J. Nanoparticle Res. Vol. 8 (2006), p.965.

Google Scholar

[16] D. Zhang andH. Yang: Physica B, Vol. 415 (2013), p.44.

Google Scholar

[17] J. P. Zheng, P. Li, Y. L. Ma and K. D. Yao: J. Appli. Polym. Sci., Vol. 86 (2002), p.1189.

Google Scholar