Study of Ozone Decomposition Using TiO2-Graphene Composites

Article Preview

Abstract:

Graphene (Gn) were prepared by reduction of graphite oxide (GO), which was obtained from oxidation of graphite powder by a modified Hummers method. The composite of titanium dioxide/graphene (TiO2/Gn) was synthesized using tetrabutyl titanate and GO as the precursors by a sol-gel method. The ozone photodecomposition efficiency of TiO2/Gn was operated under ultraviolet-visible (UV-Vis, λ>365nm) light irradiation. Results showed that as-prepared TiO2/Gn composite exhibited photodecomposition efficiency of 66.12% under UV-Vis light irradiation 1h with the initial concentration of 0.150ppm-0.200ppm, preliminary larger than that of pure TiO2 (25.95%), self-photolysis of ozone without photocatalysts (1.33%). The effects of initial concentration of ozone and photodecomposition mechanism were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-107

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wan-Kuen Jo. Vacuum 99 (2014) 22e25.

Google Scholar

[2] Demeestere K, Dewulf J, Van Langenhove H. Crit Rev Environ Sci Technol. 2007; 37: 489e538.

Google Scholar

[3] Henderson MA. Surf Sci Rep 2011; 66: 185e297.

Google Scholar

[4] R. Alberici, W. Jardim. Applied Catalysis B: Environmental 14 (1997) 55–68.

Google Scholar

[5] G. Vincent, P.M. Marquaire, O. Zahra. Journal of Photochemistry and Photobiology A: Chemistry 197 (2008) 177–189.

Google Scholar

[6] F.B. Li, X.Z. Li, C.H. Ao, S.C. Lee, M.F. Hou. Chemosphere 59(2005) 787–800.

Google Scholar

[7] S. Wang, H.M. Ang, M.O. Tade. Environment International33 (2007) 694–705.

Google Scholar

[8] J. Mo, Y. Zhang, Q. Xu, J.J. Lamson, R. Zhao. P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[9] Leary R, Westwood A. Carbon 2011; 49: 741e72.

Google Scholar

[10] Xiong, Z. G.; Zhao, X. S. J. Am. Chem. Soc. 2012, 134, 5754.

Google Scholar

[11] Woan, K.; Pyrgiotakis, G.; Sigmund, W. Adv. Mater. 2009, 21, 2233.

Google Scholar

[12] Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Garcia. -Hernandez, M.; Garcia, M. A.; Cingolani, R.; Cozzoli, P. D. J. Am. Chem. Soc. 2010, 132, 2437.

DOI: 10.1021/ja910322a

Google Scholar

[13] Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Figueiredo JL, Faria JL, Falaras P, et al. Appl Catal B 2012; 123124: 241e56.

Google Scholar

[14] Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, et al. Carbon 2011; 49: 2693e701.

Google Scholar

[15] Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS, et al. Chem Eng J 2011; 170: 226e32.

Google Scholar

[16] Lightcap IV, Kosel TH, Kamat PV. Nano Lett 2010; 10: 577e83.

Google Scholar

[17] Zhang H, Lv X, Li Y, Wang Y, Li J. ACS Nano 2010; 4: 380e6.

Google Scholar

[18] Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically Derived. Science 2008, 319, 1229–1232.

Google Scholar

[19] Stankovich S, Dikin DA, Dormmett GHB, Kohlhaas KM, Mimny EJ, Stach EA, et al. Nature 2006; 442: 282e6.

Google Scholar

[20] Golodets G. I. Naukova Dumka , Kiev, (1977).

Google Scholar

[21] Dhandapanic B , Ogama S T. Chem. Lett . 1995, (6): 413 -414.

Google Scholar

[22] Seiichiro I , Masaaki I , Tomoyasu I. et. al. Ind. Eng. Chem. Res. , 1991 , 30 (1): 217 - 221.

Google Scholar

[23] Agustin R, Gonzalez E, JavierS. Zeitschrift. physiklis-chechemie Neue Floge. 1981, 126 : 251 - 257.

Google Scholar

[24] Ohtani B. J . Chem. Soc. Faraday trans. 1992 , 88 (7): 1049 - 1053.

Google Scholar