Fractional Extraction and Structural Characterization of Coconut Shell Hemicellulose

Article Preview

Abstract:

Three principal components (cellulose, lignin, and hemicellulose) of coconut shell (CS), an abundant tropical biomass, were quantified using the Van Soest method. It was observed that CS had a high content of hemicellulose (30% of the raw CS material). The present study was undertaken to investigate the extractability of hemicellulose from CS obtained by ultrasound-assisted potassium hydroxide solution with the hydrogen peroxide method. The ultrasonic treatment and sequential extractions with alkali and alkaline peroxide under optimal conditions led to a release of more than 93% of the original hemicellulose. The effects of experimental variables, including pH value, reaction temperature and time, hydrogen peroxide content, and magnesium sulfate dosage on hemicellulose content were investigated. The obtained hemicelluloses were characterized by Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), and comprehensive thermal analysis (TGA), which showed that potassium hydroxide significantly affected the yield of relatively pure hemicellulose.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-113

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. X. Sun, R. C. Sun and X. F. Sun: Carbohydr. Res. Vol. 339 (2004), p.291.

Google Scholar

[2] J. X. Sun, X. F. Sun and R. C. Sun: Carbohydr. Polym. Vol. 56 (2004), 195.

Google Scholar

[3] J. L. Ren, R. C. Sun and F. Peng: Polym. Degrad. Stabil. Vol. 93 (2008), p.786.

Google Scholar

[4] S. Zheng: Trop. Agr. Eng. Vol. 33 (2009) , p.32.

Google Scholar

[5] J. P. Mikklo and T. Salmi: Catal. Today Vol. 64 (2001), p.271.

Google Scholar

[6] N. Shukry, F. Ishak and Z. Sefain: Therm. Anal. Vol. 37 (1991), pp.915-926.

Google Scholar

[7] F. Xu, J. X. Sun and C. F. Liu: Carbohydr. Res. Vol. 341 (2006), pp.253-261.

Google Scholar

[8] C. Martín, H. B. Klinke and A. B. Thomsen: Enzyme Microb. Technol. Vol. 40 (2007), p.426.

Google Scholar

[9] Y. J. Lee, C. H. Chung and D. F. Day: Bioresour. Technol. Vol. 100 (2009), p.935.

Google Scholar

[10] J. M. Fang, R. C. Sun and D. Salisbury: Polym. Degrad. Stabil. Vol. 66 (1999), p.423.

Google Scholar

[11] M. Brienzo, A. F. Siqueira, and A. M. F. Milagres: Biochem. Eng. J. Vol. 46 (2009), p.199.

Google Scholar

[12] L. Li , Y. Chen and H. Xu: Appl. Mech. Mater. Vol. 117-119 (2012), p.1203.

Google Scholar

[13] P. J. Van Soest, J. B. Robertson and B. A. Lewis: J. Dairy Sci. Vol. 74 (1991), p.3583.

Google Scholar

[14] R. C. Sun, J. M. Fang and J. Tomkinson : Carbohydr. Polym. Vol. 44 (2001), p.29.

Google Scholar

[15] K. V. Freudenberg , H. Reznik and W. Fuchs: Die Naturwissenschaften Vol. 42(1995), p.29.

Google Scholar

[16] S. M. Lewis, D. P. Holzgraefe and L. L. Berger: Anim. Feed. Sci. Tech. Vol. 17 (1987) p.179.

Google Scholar

[17] G. X. Pan, , J. L. Bolton and G. J. Leary: J. Agr. Food Chem. Vol. 46 (1998), p.5283.

Google Scholar

[18] B. Yang and C. E. Wyman: Biofuel. Bioprod. Bior. Vol. 2 (2008), p.26.

Google Scholar

[19] R. C. Sun, X. F. Sun, , and J. Tomkinson: A. C. S. Vol. 864 (2003), p.2.

Google Scholar

[20] R. C. Sun and J. Tomkinson: Carbohydr. Polym. Vol. 5 (2002), p.263.

Google Scholar

[21] J. X. Sun, X. F. Sun, and H. Zhao: Polym. Degrad. Stab. Vol. 84 (2004), p.331.

Google Scholar

[22] M. V. Ramiah: Appl. Polym. Sci. Vol. 14 (1970), p.1323.

Google Scholar

[23] H. Yang, R. Yan and H. Chen: Energy & Fuels Vol. 20 (2005), p.388.

Google Scholar

[24] H. P. Yang, R. Yan and H. P. Chen: Fuel Vol. 86 (2007), p.1781.

Google Scholar