[1]
Adams, R.J., Buffington, J. M., Sparks, A. G. and Banda, S. S. Robust Multivariable Flight Control, Springer-Verlag, (1994).
Google Scholar
[2]
Blakelock, J.H. Automatic Control of Aircraft and Missiles, Wiley, New York, (1991).
Google Scholar
[3]
Meyer, G., Su R. and Hunt L.R. Application of nonlinear transformations to automatic flight control[J]. Automatica, 1984, 20(1), 103-107.
DOI: 10.1016/0005-1098(84)90069-4
Google Scholar
[4]
Lane, S.H. and Stengel, R.F. Flight control design using nonlinear inverse dynamics [J]. Automatica, 1988, 24(4), 471-483.
DOI: 10.1016/0005-1098(88)90092-1
Google Scholar
[5]
Luo W, Chu Y C, Ling K V. H∞ actions inverse optimal attitude tracking control of rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 481- 493.
DOI: 10.2514/1.6471
Google Scholar
[6]
Seo D, Akella M R. High-performance spacecraft adaptive attitude-tracking control through attracting manifold design[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 884-891.
DOI: 10.2514/1.33308
Google Scholar
[7]
Jin Y, Liu X, Qiu W, et al. Time-varying sliding mode controls in rigid spacecraft attitude tracking[J]. Chinese Journal of Aeronautics, 2008, 21: 352-360.
DOI: 10.1016/s1000-9361(08)60046-1
Google Scholar
[8]
Kim K S, Kim Y. Robust backstepping control for slew maneuver using nonlinear tracking function[J]. IEEE Transactions on Control System Technology, 2003, 11: 822-829.
DOI: 10.1109/tcst.2003.815608
Google Scholar
[9]
Liu Y C, Zhang T, Liu B, et al. Controller design based on similar skew-symmetric structure[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(7): 1047-1049. [in Chinese].
Google Scholar