Microstructure and Mechanical Properties of Low-Si Spring Steels Produced by Quenching- Isothermal-Quenching-Tempering Process

Article Preview

Abstract:

An investigation of low Si spring steels (50CrVA) subjected to quenching-isothermal-quenching-tempering (Q-I-Q-T) process is presented. The results indicated that Q-I-Q-T process lead to the excellent mechanical properties compare to those treated by traditional heat-treatment, quenching and tempering, owing to the multiphase structure. The Q-I-Q-T treated microstructure consists of martensite, retained austensite, bainite and fine distributed carbides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-78

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Speer, D. K. Matlock, B. C. De Cooman and J. G. Schroth: Carbon partitioning into austenite after martensite transformation, Acta Mater., 2003, 51, 2611-2622.

DOI: 10.1016/s1359-6454(03)00059-4

Google Scholar

[2] C.Y. Wang, J. Shi, W.Q. Cao, H. Dong: Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel, Mater. Sci. Eng., 2010, A 527, 3442-3449.

DOI: 10.1016/j.msea.2010.02.020

Google Scholar

[3] E. D. Moor, S. Lacroix, A. J. Clarke, J. Penning and J. G. Speer: Effect of Retained Austenite Stabilized via Quench and Partitioning on the Strain Hardening of Martensitic Steels, Metall. Mat. Trans., 2008, A 39, 2586-2595.

DOI: 10.1007/s11661-008-9609-z

Google Scholar

[4] A. M. Streicher, J. G. Speer, D. K. Matlock and B. C. De Cooman: Quenching and partitioning response of a Si-added TRIP sheet steel'. Proceeding of an International Conference on 'Advanced High Strength Steel for Automotive Applications, Winter Park, United States, June 2004, 51-62.

DOI: 10.1002/srin.200200210

Google Scholar

[5] D. K. Matlock, V. E. Brautigam and J. G. Speer:Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel, , Mater. Sci. Forum, 2003, 426–432, 1089–1094.

DOI: 10.4028/www.scientific.net/msf.426-432.1089

Google Scholar

[6] F.C. Rizzo, D.V. Edmonds, K. He, J.G. Speer, D.K. Matlock and A. J. Clarke: Carbon enrichment of austenite and carbide precipitation during the Quenching and Partitioning (Q&P) process', Proceeding of an international conference on 'Solid-solid Phase Transformations in Inorganic Materials, Phoenix, USA, November 2005, 535–544.

DOI: 10.1016/j.scriptamat.2009.03.021

Google Scholar

[7] A. J. Clarke, J. G. Speer, M. K. Miller, R. E. Hackenberg, D. V. Edmonds, D. K. Matlock, F. C. Rizzo, K. D. Clarke, E. De Moor: Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process, Acta Mater., 2008, 56, 16–22.

DOI: 10.1016/j.actamat.2007.08.051

Google Scholar

[8] X. D. Wang, N. Zhong, Y. H. Rong, T. Y. Hsu and L. Wang: Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process, J. Mater. Res., 2009, 24, 260–267.

DOI: 10.1557/jmr.2009.0029

Google Scholar

[9] M. J. Santofimia, L. Zhao and J. Sietsma: Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metall. Mat. Trans., 2009, A 40, 46-57.

DOI: 10.1007/s11661-008-9701-4

Google Scholar

[10] C. H. Gur and A. E. Tekkaya: Finite element simulation of quench hardening, Steel Research, 1996, 67, 298-306.

DOI: 10.1002/srin.199605494

Google Scholar