Developed Numerical Investigation into Residual Stress by Vickers Instrumented Indentation Technique

Article Preview

Abstract:

This research presents a developed simple analytical model to estimate the residual stress state and its magnitude in plasma sprayed coating based on the Vickers instrumented indentation results. By means of energy method during a Vickers indentation cycle, it is convenient to compute the stress state and its magnitude without any comparison of load-displacement curves of stress-free reference material. Computed results show that the residual stress in plasma sprayed Al-Si coating mainly ranges between 23-32 MPa in tensile state, which is consistent with the measurement of residual stress in as-sprayed NiCrAlY coating using neutron diffraction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-45

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Fauchais, Understanding plasma spraying, J. Phys. D: Appl. Phys. 37 (2004) R86-R108.

DOI: 10.1088/0022-3727/37/9/r02

Google Scholar

[2] P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle, Knowledge concerning splat formation: an invited review, J. Thermal. Spray. Technol. 13 (2004) 337-360.

DOI: 10.1361/10599630419670

Google Scholar

[3] S.H. Leigh, C.K. Lin, C.C. Berndt, Elastic response of thermal spray deposits under indentation tests, J. Am. Ceram. Soc. 80 (1997) 2093-(2099).

DOI: 10.1111/j.1151-2916.1997.tb03093.x

Google Scholar

[4] F. Tang, J.M. Schoenung, Evolution of Young's modulus of air plasma sprayed yttria-stabilized zirconia in thermally cycled thermal barrier coatings, Scripta Mater. 54 (2006) 1587-1592.

DOI: 10.1016/j.scriptamat.2006.01.021

Google Scholar

[5] C.J. Li, A. Ohmori, R. Mcpherson, The relationship between microstructure and Young's modulus of thermally sprayed ceramic coatings, J. Mater. Sci. 32 (1997) 997-1004.

Google Scholar

[6] J. Matejicek, S. Sampath, In situ measurement of residual stresses and elastic moduli in thermal sprayed coatings: Part 1: apparatus and analysis, Acta Mater. 51 (2003) 863-872.

DOI: 10.1016/s1359-6454(02)00478-0

Google Scholar

[7] T.W. Clyne, S.C. Gill, Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work, J. Thermal. Spray. Technol. 5 (1996) 401-418.

DOI: 10.1007/bf02645271

Google Scholar

[8] J. Matejicek, S. Sampath, Intrinsic residual stresses in single splats produced by thermal spray processes, Acta Mater. 49 (2001) 1993-(1999).

DOI: 10.1016/s1359-6454(01)00099-4

Google Scholar

[9] J.I. Jang, Estimation of residual stress by instrumented indentation: a review. J. Ceram. Proc. Res. 10 (2009) 391-400.

Google Scholar

[10] Q. Wang, K. Ozaki, H. Ishikawa, S. Nakano, H. Ogiso, Indentation method to measure the residual stress induced by ion implantation, Nucl. Instr. and Meth. in Phys. Res. B, 242 (2006) 88-92.

DOI: 10.1016/j.nimb.2005.08.008

Google Scholar

[11] S. Suresh, A.E. Giannakopoulos, A new method for estimating residual stresses by instrumented sharp indentation, Acta Mater. 46 (1998) 5755-5767.

DOI: 10.1016/s1359-6454(98)00226-2

Google Scholar

[12] E. Frutos, M. Multigner, J.L. G. Carrasco, Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel, Acta Mater. 58 (2010) 4191-4198.

DOI: 10.1016/j.actamat.2010.04.010

Google Scholar

[13] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[14] N.A. Stilwell, D. Tabor, Elastic recovery of conical indentations, Proc. Phys. Soc. Lond. 78 (1961) 169-179.

DOI: 10.1088/0370-1328/78/2/302

Google Scholar

[15] B.R. Lawn, V.R. Howes, Elastic recovery at hardness indentations, J. Mater. Sci. 16 (1981) 2745-2752.

DOI: 10.1007/bf02402837

Google Scholar

[16] J. Alcalά, Instrumented micro-indentation of zirconia ceramics. J. Am. Ceram. Soc. 83 (2000) 1977-(1984).

Google Scholar

[17] M. Sakai, Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials, Acta Metall. Mater. 41 (1993) 1751-1758.

DOI: 10.1016/0956-7151(93)90194-w

Google Scholar

[18] Y. Bao, L. Liu, Y. Zhou. Assessing the elastic parameters and energy-dissipation capacity of solid materials: A residual indent may tell all. Acta Mater. 53 (2005) 4857-4862.

DOI: 10.1016/j.actamat.2005.06.031

Google Scholar

[19] J. Matejicek, S. Sampath, P.C. Brand, H.J. Prask, Quenching, thermal and residual stress in plasma sprayed deposits: NiCrAlY and YSZ coatings, Acta Mater. 47 (1999) 607-617.

DOI: 10.1016/s1359-6454(98)00360-7

Google Scholar

[20] S. Kuroda, T.W. Clyne, The quenching stress in thermally sprayed coatings, Thin Solid Films. 200 (1991) 49-66.

DOI: 10.1016/0040-6090(91)90029-w

Google Scholar