Effect of Coating on the Thermal Conductivities of Diamond/Cu Composites Prepared by Spark Plasma Sintering (SPS)

Article Preview

Abstract:

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. He, R.L. Fu, Y. Shen. Preparation and properties of Si3N4/PS composites used for electronic packaging. Compos Sci Technol 2007; 67: 2493-2499.

DOI: 10.1016/j.compscitech.2006.12.014

Google Scholar

[2] K. Chu, C. Jia, W. Tian, X.L. Hui, C.H. Guo. Thermal conductivity of spark plasma sintering consolidated SiC/Al composites pores (Numerical study and experimental validation). Compos Part A: Applied Sci. Manuf. 2010; 41: 161-167.

DOI: 10.1016/j.compositesa.2009.10.001

Google Scholar

[3] M. Stubblefied, S.S. Pang, V.A. Cundy. Heat loss in insulated pipe the influence of thermal contact resistance. A case study Compos Part B: Eng 1996; 27: 85-93.

DOI: 10.1016/1359-8368(95)00028-3

Google Scholar

[4] S. Wang, J. Qiu. Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos Part B: Eng 2010; 41: 533-6.

DOI: 10.1016/j.compositesb.2010.07.002

Google Scholar

[5] A.M. Abyzov, S.V. Kidalov, F.M. Shahov. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper(silver) matrix. J. Mater Sci 2011; 46: 1424–38.

DOI: 10.1007/s10853-010-4938-x

Google Scholar

[6] S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, X.H. Qu. Effect of coating on the microstructure and thermal conductivities of diamond/Cu composites prepared by powder metallurgy. Compos Sci Technol 2011; 71: 1550-1555.

DOI: 10.1016/j.compscitech.2011.06.012

Google Scholar

[7] Y. Xia, Y.Q. Song, C.G. Lin, S. Cui, Z.Z. Fang. Effect of carbide formers on microstructure and thermal conductivity of diamond/Cu composites for heat sink materials. Trans Nonferrous Met Soc 2009; 19: 1161-1166.

DOI: 10.1016/s1003-6326(08)60422-7

Google Scholar

[8] L.C. Davis, B.E. Artz. Thermal conductivity of metal-matrix composites. J. Appl. Phys. 1995; 77: 4954-4960.

DOI: 10.1063/1.359302

Google Scholar

[9] I. Khorunzhii, H. Gabor, R. Job, W.R. Fahmer, A. Denisenko, D. Bruner, U. Peschek. Measurement 2002; 32: 163-172.

DOI: 10.1016/s0263-2241(02)00009-x

Google Scholar

[10] F. Cardarlli. Materials Handbook, Springer. England, London 2008; pp.160-162, 173.

Google Scholar