[1]
Hoek, E., Brown E.T., Empirical strength criterion for rock masses (1980) J. Geotech. Engng Div., ASCE 106 (GT9), pp.1013-1035.
DOI: 10.1061/ajgeb6.0001029
Google Scholar
[2]
Hoek, E., Marinos, P., Benissi, M. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses (1998) Bull Eng Geol Environ 57, pp.151-160.
DOI: 10.1007/s100640050031
Google Scholar
[3]
Hoek, E., Carranza-Torres, C., Corkum, B, Hoek-Brown failure criterion-2002 edition (2002) http: /www. rocksciennce. com.
Google Scholar
[4]
Hoek, E., Marinos, P i Marinos, V., Characterisation and engineering properties of tectonically undisturbed but lithologically varied sedimetray rock masses (2005) International Journal of Rock Mechanics & Mining Sciences 42 (2005), pp.277-285.
DOI: 10.1016/j.ijrmms.2004.09.015
Google Scholar
[5]
Ilijovski, Z., Jovanovski, M., Velevski, A., Metodologija na inženerskogeološko modeliranje na pregradnoto mesto za brana Sveta Petka, (2004) Prvi nacionalen kongres za brane, Ohrid.
DOI: 10.35123/geo-expo_2017_21
Google Scholar
[6]
Jovanovski, M., Gapkovski, N., Ilijovski, Z., Correlation between Rock Mass Rating and deformability on a profile for arch dam Sveta Petka (2002) 10-th International Conference of the DGKM, Ohrid, pp.487-496.
Google Scholar
[7]
Krvavac, A., Jovanovski, M., Gapovski, N., Ilijovski, Z., Fizički i analitički modeli za karbonatne stijenske massive (2006) II Simpozijum makedonskog udruženja za geotehniku, Ohrid, pp.587-586.
Google Scholar
[8]
Kujundžić, B., Sadržina i metodika izrade inženjersko-geoloških preseka i inženjersko-geoloških i geotehničkih modela. (1973) Saopštenja IX kongresa Jugoslovenskog komiteta za visoke brane, Zlatibor, pp.834-844.
DOI: 10.35123/geo-expo_2016_9
Google Scholar
[9]
Kujundžić, B., Osnovi mehanike stena (I) (1977) Građevinski kalendar, SGIJT, Beograd, 294 p.
Google Scholar
[10]
Kujundžić, B., Petrović, Lj., Korelacija statičkih i dinamičkih karakteristika deformabilnosti krečnjačkih stenskih masa (1980) V simpozij JDMSPR, 1, Split, pp.23-31.
Google Scholar
[11]
Lokin, P., Lapčević, R., Petričević, M., Principi i kriterijumi zoniranja, izbora uzoraka i ekstrapolacije rezultata ispitivanja na stenski masiv kod podzemnih objekata. (1989) VII JDMSPR, Beograd, 381 p.
Google Scholar
[12]
Pavlović, N., O metodologiji geotehničkog modeliranja (1996) The International Conference: Trends in the Development of Geotechnics, Beograd, pp.239-248.
Google Scholar
[13]
Usmanov, R., Rakocevic, M., Murgul, V., Vatin, N. Problems of sub-mountain area development associated with collapsing loess soils (case of Tajikistan) (2014) Applied Mechanics and Materials. Vols. 633-634 pp.927-931.
DOI: 10.4028/www.scientific.net/amm.633-634.927
Google Scholar
[14]
Usmanov, R., Vatin, N., Murgul, V. Highly compacted and reinforced soil beds as an efficient method to build artificial foundation based on weak soils. (2014) Applied Mechanics and Materials. Vol. 680 pp.474-480.
DOI: 10.4028/www.scientific.net/amm.680.474
Google Scholar
[15]
Premrov, M., Špacapan, I. Solving exterior problems of wave propagation based on an iterative variation of local DtN operators (2004) Applied Mathematical Modelling, 28 (3), pp.291-304.
DOI: 10.1016/s0307-904x(03)00136-7
Google Scholar
[16]
Premrov, M., Umek, A., Spacapan, I. An iterative FEM for solving elastodynamics in infinite domains (2000) ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 80 (4 SUPPL. 3), pp. S749-S750.
Google Scholar
[17]
Lukić, D.Č., Prokić, A.D., Brčić, S.V. Stress state around cylindrical cavities in transversally isotropic rock mass (2014) Geomechanics and Engineering, 6 (3), pp.213-233.
DOI: 10.12989/gae.2014.6.3.213
Google Scholar