Two-Component Incompressible Fluid Model for Simulating the Cohesive Soil Erosion

Article Preview

Abstract:

Non-stationary inhomogeneous system of the Navier–Stokes equations with variable viscosity depending on the density has been used for modeling the process of the cohesive soil erosion. Value of the density has been determined by the convection–diffusion equation. For solving the obtained system we have used an algorithm consisting of the splitting scheme on physical factors and the predictor–corrector method. The system has been solved on the staggered grid by the grid method. The results of calculations for two-dimensional and three-dimensional problems are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

361-368

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Osadchiy, A. Neft i gaz rossiyskogo shelfa: otsenki i prognozy [Oil and Gas of the Russian shelf, estimates and forecasts] (2006) Nauka i zhizn, 7, pp.2-7.

Google Scholar

[2] Loytsyanskiy, L.G. Mekhanika zhidkosti i gaza [Fluid and gas mechanics] (2003) Mekhanika zhidkosti i gaza, 846 p.

Google Scholar

[3] Batchelor, G.K. An introduction to fluid dynamics (2000) An introduction to fluid dynamics, 660 p.

Google Scholar

[4] Fuhs, A.E., Schetz, J.A. Handbook of Fluid Dynamics and Fluid Machinery: Fundamentals of Fluid Dynamics, Volume I (1996) Handbook of Fluid Dynamics and Fluid Machinery: Fundamentals of Fluid Dynamics, Volume I, 950 p.

DOI: 10.1002/9780470172636

Google Scholar

[5] Drew, D.A., Passman, S.L. Theory of Multicomponent Fluids (1998) Theory of Multicomponent Fluids, 310 p.

Google Scholar

[6] Chumakov, M.M. Chislennoye modelirovaniye protsessa razmyva donnogo grunta v okrestnosti kilya torosa [Numerical modeling of the seabed soil erosion near the hummock keel] (2013) Vesti gazovoy nauki, 3 (14), pp.133-140.

Google Scholar

[7] Sidorchuk, A. Yu. Raschet intensivnosti erozii pochv i svyaznykh gruntov [Calculation of the erosion intensity of grounds and cohesive soils] (2001) Pochvovedeniye, 8, pp.1001-1008.

Google Scholar

[8] Borovkov, V.S., Volynov, M.A. Razmyv rechnogo rusla v gruntakh, obladayushchikh stsepleniyem [River bed erosion in cohesive soils] (2013) Vestnik MGSU, 4, pp.143-149.

DOI: 10.22227/1997-0935.2013.4.143-149

Google Scholar

[9] Zakharov, Yu.N., Ivanov, K.S. Ob ispolzovanii gradiyentnykh iteratsionnykh metodov pri reshenii nachalno-krayevykh zadach dlya trekhmernoy sistemy uravneniy Navye-Stoksa [Gradient iterative methods for solving initial boundary value problems for three-dimensional Navier-Stokes equations] (2011).

Google Scholar

[10] Balaganckii, M. Yu., Zakharov, Yu.N., Shokin, Yu.I. Comparison of two- and three-dimensional steady flows of a homogeneous viscous incompressible fluid (2009) Russian Journal of Numerical Analysis and Mathematical Modelling 24, 1, pp.1-14.

DOI: 10.1515/rjnamm.2009.001

Google Scholar

[11] Milosevic, H., Gaydarov, N.A., Zakharov, Y.N. Model of incompressible viscous fluid flow driven by pressure difference in a given channel (2013) International Journal of Heat and Mass Transfer, 62, pp.242-246.

DOI: 10.1016/j.ijheatmasstransfer.2013.02.059

Google Scholar

[12] Geidarov, N.A., Zakharov, Y.N., Shokin, Yi.I. Solution of the problem of viscous fluid flow with a given pressure differential (2011) Russian Journal of Numerical Analysis and Mathematical Modelling 26, 1, pp.39-48.

DOI: 10.1515/rjnamm.2011.003

Google Scholar

[13] Janenko, N.N., Shokin, Ju.I., Zaharov, Ju.N. On the nonlinear acceleration of iterative schemes (1979) Quatrieme Colloque International sur les Metodes de CalculScientifiqueet Technique, France, 20 p.

Google Scholar

[14] Vatin, N., Isaev, S., Guvernyik, S., Gagarin, V., Basok, B., Zhukova, Yu. Architectural building aerodynamics of tall structures with the bleeding effect and wind energy selection (2014).

DOI: 10.7250/iscconstrs.2014.32

Google Scholar

[15] Isaev, S.A., Vatin, N.I., Lebiga, V.A., Zinoviev, V.N., Keh-Chin Chang, Jiun-Jih Miau Problems and methods of numerical and experimental investigation of high rise constructions' aerodynamics in the coastal region sea-land, (2013).

DOI: 10.5862/mce.37.8

Google Scholar

[16] Gummel, E.E., Milosevic, H., Ragulin, V.V., Zakharov, Yu.N., Zimin, A.I. Motion of viscous inhomogeneous incompressible fluid of variable viscosity (2014) Zbornik radova konferencije MIT 2013, pp.267-274.

Google Scholar

[17] Belotserkovskiy, O.M. Chislennoye modelirovaniye v mekhanike sploshnykh sred [Numerical modeling in continuum mechanics] (1994) Chislennoye modelirovaniye v mekhanike sploshnykh sred, 448 p.

Google Scholar

[18] Yanenko, N.N. Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoy fiziki [Method of fractional steps for solving multidimensional problems of mathematical physics] (1967).

Google Scholar

[19] Patankar, S. Numerical heat transfer and fluid flow (1980) Numerical heat transfer and fluid flow, 197 p.

DOI: 10.1201/9781482234213

Google Scholar

[20] Zakharov, Yu.N. Gradiyentnyye iteratsionnyye metody resheniya zadach gidrodinamiki [Gradient iterative methods for solving problems of hydrodynamics] (2004) Gradiyentnyye iteratsionnyye metody resheniya zadach gidrodinamiki, 239 p.

DOI: 10.3367/ufnr.0140.198306k.0344

Google Scholar