[1]
Osadchiy, A. Neft i gaz rossiyskogo shelfa: otsenki i prognozy [Oil and Gas of the Russian shelf, estimates and forecasts] (2006) Nauka i zhizn, 7, pp.2-7.
Google Scholar
[2]
Loytsyanskiy, L.G. Mekhanika zhidkosti i gaza [Fluid and gas mechanics] (2003) Mekhanika zhidkosti i gaza, 846 p.
Google Scholar
[3]
Batchelor, G.K. An introduction to fluid dynamics (2000) An introduction to fluid dynamics, 660 p.
Google Scholar
[4]
Fuhs, A.E., Schetz, J.A. Handbook of Fluid Dynamics and Fluid Machinery: Fundamentals of Fluid Dynamics, Volume I (1996) Handbook of Fluid Dynamics and Fluid Machinery: Fundamentals of Fluid Dynamics, Volume I, 950 p.
DOI: 10.1002/9780470172636
Google Scholar
[5]
Drew, D.A., Passman, S.L. Theory of Multicomponent Fluids (1998) Theory of Multicomponent Fluids, 310 p.
Google Scholar
[6]
Chumakov, M.M. Chislennoye modelirovaniye protsessa razmyva donnogo grunta v okrestnosti kilya torosa [Numerical modeling of the seabed soil erosion near the hummock keel] (2013) Vesti gazovoy nauki, 3 (14), pp.133-140.
Google Scholar
[7]
Sidorchuk, A. Yu. Raschet intensivnosti erozii pochv i svyaznykh gruntov [Calculation of the erosion intensity of grounds and cohesive soils] (2001) Pochvovedeniye, 8, pp.1001-1008.
Google Scholar
[8]
Borovkov, V.S., Volynov, M.A. Razmyv rechnogo rusla v gruntakh, obladayushchikh stsepleniyem [River bed erosion in cohesive soils] (2013) Vestnik MGSU, 4, pp.143-149.
DOI: 10.22227/1997-0935.2013.4.143-149
Google Scholar
[9]
Zakharov, Yu.N., Ivanov, K.S. Ob ispolzovanii gradiyentnykh iteratsionnykh metodov pri reshenii nachalno-krayevykh zadach dlya trekhmernoy sistemy uravneniy Navye-Stoksa [Gradient iterative methods for solving initial boundary value problems for three-dimensional Navier-Stokes equations] (2011).
Google Scholar
[10]
Balaganckii, M. Yu., Zakharov, Yu.N., Shokin, Yu.I. Comparison of two- and three-dimensional steady flows of a homogeneous viscous incompressible fluid (2009) Russian Journal of Numerical Analysis and Mathematical Modelling 24, 1, pp.1-14.
DOI: 10.1515/rjnamm.2009.001
Google Scholar
[11]
Milosevic, H., Gaydarov, N.A., Zakharov, Y.N. Model of incompressible viscous fluid flow driven by pressure difference in a given channel (2013) International Journal of Heat and Mass Transfer, 62, pp.242-246.
DOI: 10.1016/j.ijheatmasstransfer.2013.02.059
Google Scholar
[12]
Geidarov, N.A., Zakharov, Y.N., Shokin, Yi.I. Solution of the problem of viscous fluid flow with a given pressure differential (2011) Russian Journal of Numerical Analysis and Mathematical Modelling 26, 1, pp.39-48.
DOI: 10.1515/rjnamm.2011.003
Google Scholar
[13]
Janenko, N.N., Shokin, Ju.I., Zaharov, Ju.N. On the nonlinear acceleration of iterative schemes (1979) Quatrieme Colloque International sur les Metodes de CalculScientifiqueet Technique, France, 20 p.
Google Scholar
[14]
Vatin, N., Isaev, S., Guvernyik, S., Gagarin, V., Basok, B., Zhukova, Yu. Architectural building aerodynamics of tall structures with the bleeding effect and wind energy selection (2014).
DOI: 10.7250/iscconstrs.2014.32
Google Scholar
[15]
Isaev, S.A., Vatin, N.I., Lebiga, V.A., Zinoviev, V.N., Keh-Chin Chang, Jiun-Jih Miau Problems and methods of numerical and experimental investigation of high rise constructions' aerodynamics in the coastal region sea-land, (2013).
DOI: 10.5862/mce.37.8
Google Scholar
[16]
Gummel, E.E., Milosevic, H., Ragulin, V.V., Zakharov, Yu.N., Zimin, A.I. Motion of viscous inhomogeneous incompressible fluid of variable viscosity (2014) Zbornik radova konferencije MIT 2013, pp.267-274.
Google Scholar
[17]
Belotserkovskiy, O.M. Chislennoye modelirovaniye v mekhanike sploshnykh sred [Numerical modeling in continuum mechanics] (1994) Chislennoye modelirovaniye v mekhanike sploshnykh sred, 448 p.
Google Scholar
[18]
Yanenko, N.N. Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoy fiziki [Method of fractional steps for solving multidimensional problems of mathematical physics] (1967).
Google Scholar
[19]
Patankar, S. Numerical heat transfer and fluid flow (1980) Numerical heat transfer and fluid flow, 197 p.
DOI: 10.1201/9781482234213
Google Scholar
[20]
Zakharov, Yu.N. Gradiyentnyye iteratsionnyye metody resheniya zadach gidrodinamiki [Gradient iterative methods for solving problems of hydrodynamics] (2004) Gradiyentnyye iteratsionnyye metody resheniya zadach gidrodinamiki, 239 p.
DOI: 10.3367/ufnr.0140.198306k.0344
Google Scholar