[1]
Neumann, J. Theory of Self-reproducing Automata (1966) University of Illinois Press, Urbana, 362 p.
Google Scholar
[2]
Thatcher, J. Universality in the von Neumann cellular model (1964) Technical Report 03105-30-T, 263 p.
Google Scholar
[3]
Codd, E.F. Cellular Automata (1968) Academic Press, NewYork, 327 p.
Google Scholar
[4]
Wolfram, S. Theory and Applications of Cellular Automata (1986) World Scientific Publication, Singapore, 276 p.
Google Scholar
[5]
Burks, E. Essays on Cellular Automata (1966) University of Illinois Press, 174 p.
Google Scholar
[6]
Hogeweg, P. Cellular automata as a paradigm for ecological modeling (1988) Applied Mathematics and Computation - Parallel Processing in Landscape Dynamics, 27(1), pp.81-100.
DOI: 10.1016/0096-3003(88)90100-2
Google Scholar
[7]
Ermentrout, G.B., Edelstein-Keshet, L. Cellular automata approaches to biological modeling (1993) Journal of Theoretical Biology, 160, 97–133.
DOI: 10.1006/jtbi.1993.1007
Google Scholar
[8]
Epstein, J.M. Generative Social Science (2006) Princeton University Press, 253 p.
Google Scholar
[9]
Ikenaga, T., Ogura, T. A dtcnn universal machine based on highly parallel 2-d cellular automata cam2 (1998) IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45, p.538–546.
DOI: 10.1109/81.668865
Google Scholar
[10]
Trobec, R., Gyergyek, L., Korenini,J. Two-dimensional parallel system diagnostic (1989) Microprocessing and Microprogramming, 25, pp.353-358.
DOI: 10.1016/0165-6074(89)90221-4
Google Scholar
[11]
Trobec, R., Jerebic, I. Local Diagnosis in Massively Parallel Systems (1997) Parallel Computing, 23, pp.721-731.
DOI: 10.1016/s0167-8191(97)00023-9
Google Scholar
[12]
Horgan, G.W., Ball, B.C. Simulating diffusion in a boolean model of soil pores (1994) European Journal of Soil Science, p.483–491.
DOI: 10.1111/j.1365-2389.1994.tb00534.x
Google Scholar
[13]
Kosec, G., Zinterhof, P. Local strong form meshless method on multiple Graphics Processing Units (2013) CMES: Computer Modeling in Engineering & Sciences, 91, pp.377-396.
Google Scholar
[14]
Kosec, G., Depolli, M., Aleksandra, R., Trobec, R. Super linear speedup in a local parallel meshless solution of thermo-fluid problems (2014) Computers & Structures, 10(101), pp.845-852.
DOI: 10.1016/j.compstruc.2013.11.016
Google Scholar
[15]
Flynn, M. J., Mencer, O., Milutinovic, V., Rakocevic, G., Stenstrom, P., Trobec, R., Valero, M. Moving from Petaflops to Petadata (2013) Communications of the ACM, 56, pp.39-42.
DOI: 10.1145/2447976.2447989
Google Scholar
[16]
Trobec,R., Korenini,J., Gyergyek,L. A regular WSI-node architecture (1987) Microprocessing and Microprogramming, 21, pp.75-81.
DOI: 10.1016/0165-6074(87)90021-4
Google Scholar
[17]
Trobec R. Two-dimensional regular d-meshes (2000) Parallel Computing, 26, p.1945-(1953).
DOI: 10.1016/s0167-8191(00)00063-6
Google Scholar
[18]
Kosec, G., Šarler, B. Simulation of macrosegregation with mesosegregates in binary metallic casts by a meshless method (2014) Engineering Analysis with Boundary Elements, 7, pp.126-142.
DOI: 10.1016/j.enganabound.2014.01.016
Google Scholar
[19]
Levialdi, S. On shrinking binary picture patterns Commun (1972) ACM, 15, pp.234-245.
Google Scholar
[20]
Hongchi, S., Ritter, G.X. A new parallel binary image shrinking algorithm (1995) IEEE Transactions on Image Processing, 4, p.224–226.
DOI: 10.1109/83.342194
Google Scholar
[21]
Umeo, H. Linear-time recognition of connectivity of binary images on 1-bit intercell communication cellular automaton (2001) Parallel Computing, 27, p.587–599.
DOI: 10.1016/s0167-8191(00)00079-x
Google Scholar
[22]
Stamatovic, B. On recognizing labyrinth with automata (2000) Discrete mathematics and applications, 12, p.51–65.
Google Scholar
[23]
Stamatovic, B. Automata recognition two-connected labyrinth with finite cycle diameter (2010) Programming and Computer Software, 36, p.149–157.
Google Scholar
[24]
Hoekstra, A.G., Kroc, J., Sloot, P. Simulating Complex Systems by Cellular Automata (2010) Springer Complexity, monograph Understanding Complex Systems, 526 p.
DOI: 10.1007/978-3-642-12203-3
Google Scholar
[25]
Kovačič, B., Kamnik, R., Kapović, Z. Mathematical analysis of measured displacements with emphasis on polynomial interpolation (2009) Geodetski List, 63 (4), pp.315-327.
Google Scholar