Enhanced Mualem-Van Genuchten Approach for Estimating Relative Soil Hydraulic Conductivity

Article Preview

Abstract:

New theoretical justification for the function of soil differential moisture capacity (dependence of the relative water volume content on the capillary pressure) and its antiderivative is presented. New method is based on the concept of capillarity and the lognormal distribution of the effective radii of pores. Relative hydraulic conductivity of soil is calculated with usage of these functions and Mualem's approach. Hydrophysical parameters have been interpreted and evaluated on the base of some physical and statistical soil characteristics. Also the approximation for functions of water-retention capacity and relative hydraulic conductivity of soil has been proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

355-360

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mualem, Y. A new model for predicting hydraulic conductivity of unsaturated porous media (1976) Water Resources Research, 12, pp.513-522.

DOI: 10.1029/wr012i003p00513

Google Scholar

[2] Van Genuchten, M. Th. A closed form equation for predicting the hydraulic conductivity of unsaturated soils (1980) Soil Science Society of America Journal, 44, pp.892-989.

DOI: 10.2136/sssaj1980.03615995004400050002x

Google Scholar

[3] Brutsaert, W. Probability laws for pore-size distribution (1966) Soil Science, 101, pp.85-92.

DOI: 10.1097/00010694-196602000-00002

Google Scholar

[4] Ahuja, L.R., Swartzendruber, D. An improved form of soil-water diffusivity function (1972) Soil Science Society of America Proceedings, 36, pp.9-14.

DOI: 10.2136/sssaj1972.03615995003600010002x

Google Scholar

[5] Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G. A comparison of numerical simulation model for one-dimensional infiltration (1977) Soil Science Society of America Journal, 41, pp.285-294.

DOI: 10.2136/sssaj1977.03615995004100020024x

Google Scholar

[6] Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap M.G., Van Genuchten, M. Th. Using pedotransfer functions to estimate the Van Genuchten-Mualem soil hydraulic properties: A review (2010) Vadose Zone Journal, 9, pp.795-820.

DOI: 10.2136/vzj2010.0045

Google Scholar

[7] Kosugi, K. Three-parameter lognormal distribution model for soil water retention (1994) Water Resources Research, 30, pp.891-901.

DOI: 10.1029/93wr02931

Google Scholar

[8] Kosugi, K. Lognormal distribution model for unsaturated soil hydraulic properties (1996) Water Resources Research, 32, pp.2697-2703.

DOI: 10.1029/96wr01776

Google Scholar

[9] Poluektov, R.A., Terleev, V.V., Modeling of the water retention capacity and differential moisture capacity of soil (2002) Russian Meteorology and Hydrology, 11, pp.70-75.

Google Scholar

[10] Poluektov, R.A., Terleev, V.V. Modeling the moisture retention capacity of soil with agricultural and hydrological characteristics (2005) Russian Meteorology and Hydrology, 12, pp.73-77.

Google Scholar

[11] Terleev, V.V., Mirschel, W., Schindler, U., Wenkel, K. -O. Estimation of soil water retention curve using some agrophysical characteristics and Voronin's empirical dependence (2010) International Agrophysics, 24(4), pp.381-387.

Google Scholar

[12] Terleev, V.V., Narbut, M.A., Topaj, A.G., Mirschel, W. Modelirovanie gidrofizicheskikh svoistv pochvi kak kapilliarno-poristogo tela i usovershenstvovanie metoda Mualema-Van Genukhtena: teoria [Modeling the hydrophysical properties of the soil as a capillary-porous medium and modification of the Mualem-Van Genuchten approach: theory] (2014).

DOI: 10.1155/2016/8176728

Google Scholar

[13] Poluektov, R.A., Oparina, I. V, Terleev, V.V. Three methods for calculating soil water dynamics (2003) Russian Meteorology and Hydrology, 11, pp.61-67.

Google Scholar

[14] Poluektov, R.A., Fintushal, S.M., Oparina, I.V., Shatskikh, D.V., Terleev, V.V., Zakharova, E.T. AGROTOOL - a system for crop simulation (2002) Archiv fuer Acker- und Pflanzenbau und Bodenkunde, 48(6), pp.609-635.

DOI: 10.1080/0365034021000041597

Google Scholar

[15] Poluektov, R.A., Terleev, V.V. Crop simulation model of the second and the third productivity levels (2007) Modelling water and nutrient dynamics in soil-crop systems, Springer, pp.75-89.

DOI: 10.1007/978-1-4020-4479-3_7

Google Scholar

[16] Badenko, V., Terleev, V., Topaj, A. AGROTOOL software as an intellectual core of decision support systems in computer aided agriculture (2014) Applied Mechanics and Materials, 635-637, pp.1688-1691.

DOI: 10.4028/www.scientific.net/amm.635-637.1688

Google Scholar