[1]
Mualem, Y. A new model for predicting hydraulic conductivity of unsaturated porous media (1976) Water Resources Research, 12, pp.513-522.
DOI: 10.1029/wr012i003p00513
Google Scholar
[2]
Van Genuchten, M. Th. A closed form equation for predicting the hydraulic conductivity of unsaturated soils (1980) Soil Science Society of America Journal, 44, pp.892-989.
DOI: 10.2136/sssaj1980.03615995004400050002x
Google Scholar
[3]
Brutsaert, W. Probability laws for pore-size distribution (1966) Soil Science, 101, pp.85-92.
DOI: 10.1097/00010694-196602000-00002
Google Scholar
[4]
Ahuja, L.R., Swartzendruber, D. An improved form of soil-water diffusivity function (1972) Soil Science Society of America Proceedings, 36, pp.9-14.
DOI: 10.2136/sssaj1972.03615995003600010002x
Google Scholar
[5]
Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J., Vachaud, G. A comparison of numerical simulation model for one-dimensional infiltration (1977) Soil Science Society of America Journal, 41, pp.285-294.
DOI: 10.2136/sssaj1977.03615995004100020024x
Google Scholar
[6]
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap M.G., Van Genuchten, M. Th. Using pedotransfer functions to estimate the Van Genuchten-Mualem soil hydraulic properties: A review (2010) Vadose Zone Journal, 9, pp.795-820.
DOI: 10.2136/vzj2010.0045
Google Scholar
[7]
Kosugi, K. Three-parameter lognormal distribution model for soil water retention (1994) Water Resources Research, 30, pp.891-901.
DOI: 10.1029/93wr02931
Google Scholar
[8]
Kosugi, K. Lognormal distribution model for unsaturated soil hydraulic properties (1996) Water Resources Research, 32, pp.2697-2703.
DOI: 10.1029/96wr01776
Google Scholar
[9]
Poluektov, R.A., Terleev, V.V., Modeling of the water retention capacity and differential moisture capacity of soil (2002) Russian Meteorology and Hydrology, 11, pp.70-75.
Google Scholar
[10]
Poluektov, R.A., Terleev, V.V. Modeling the moisture retention capacity of soil with agricultural and hydrological characteristics (2005) Russian Meteorology and Hydrology, 12, pp.73-77.
Google Scholar
[11]
Terleev, V.V., Mirschel, W., Schindler, U., Wenkel, K. -O. Estimation of soil water retention curve using some agrophysical characteristics and Voronin's empirical dependence (2010) International Agrophysics, 24(4), pp.381-387.
Google Scholar
[12]
Terleev, V.V., Narbut, M.A., Topaj, A.G., Mirschel, W. Modelirovanie gidrofizicheskikh svoistv pochvi kak kapilliarno-poristogo tela i usovershenstvovanie metoda Mualema-Van Genukhtena: teoria [Modeling the hydrophysical properties of the soil as a capillary-porous medium and modification of the Mualem-Van Genuchten approach: theory] (2014).
DOI: 10.1155/2016/8176728
Google Scholar
[13]
Poluektov, R.A., Oparina, I. V, Terleev, V.V. Three methods for calculating soil water dynamics (2003) Russian Meteorology and Hydrology, 11, pp.61-67.
Google Scholar
[14]
Poluektov, R.A., Fintushal, S.M., Oparina, I.V., Shatskikh, D.V., Terleev, V.V., Zakharova, E.T. AGROTOOL - a system for crop simulation (2002) Archiv fuer Acker- und Pflanzenbau und Bodenkunde, 48(6), pp.609-635.
DOI: 10.1080/0365034021000041597
Google Scholar
[15]
Poluektov, R.A., Terleev, V.V. Crop simulation model of the second and the third productivity levels (2007) Modelling water and nutrient dynamics in soil-crop systems, Springer, pp.75-89.
DOI: 10.1007/978-1-4020-4479-3_7
Google Scholar
[16]
Badenko, V., Terleev, V., Topaj, A. AGROTOOL software as an intellectual core of decision support systems in computer aided agriculture (2014) Applied Mechanics and Materials, 635-637, pp.1688-1691.
DOI: 10.4028/www.scientific.net/amm.635-637.1688
Google Scholar