Correct Formulation of the Stability Problem for Timoshenko Beam

Article Preview

Abstract:

This article is about the nonlinear problems of the theory of elastic Cosserat – Timoshenko’s rods in the material (Lagrangian) description with energy conjugated vectors of forces, moments and strains. The variational formulations of static problems was given. The differential equations of the plane stability problems were obtained from the second variation of the Lagrangian functional. The exact solutions of the stability problems for basic types of the end fixities of the rod were obtained for the Timoshenko’s rod (taking into account only bending and shear stiffness). It appears that classical well-known equilibrium stability functional and stability equations for the Timoshenko’s rod are incorrect. Also well-known Engesser formula (with bending and shear stiffness) is incorrect. The numerical solution of the stability problems for hinged Timoshenko’s rod with rigid support was obtained. Also, simplified formula for this problem was derived using asymptotic analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

854-862

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Goloskokov, D.P., Zhilin, P.A. Obshhaja nelinejnaja teorija uprugih sterzhnej s prilozheniem k opisaniju jeffekta Pojntinga. Deponirovano VINITI №1912-V87 Dep., 20 p.

Google Scholar

[2] Elisseev, V.V. Mehanika uprugih sterzhnej (1994) Mehanika uprugih sterzhnej, 88 p.

Google Scholar

[3] Zhilin, P.A., Sergeev, A.D. Ravnovesie i ustojchivost' tonkogo sterzhnja, nagruzhennogo konservativnym momentom (1994) Mehanika i processy upravlenija. Trudy SPbGTU, 448, pp.47-56.

Google Scholar

[4] Zhilin, P.A., Sergeev, A.D., Tovstik, T.P. Nelinejnaja teorija sterzhnej i ee prilozhenija (1997) Trudy XXIV letnej shkoly «Analiz i sintez nelinejnyh mehanicheskih kolebatel'nyh sistem», Sankt-Peterburg, p.313 – 337.

Google Scholar

[5] Zhilin, P.A. Prikladnaja mehanika. Teorija tonkih uprugih sterzhnej (2007) Prikladnaja mehanika. Teorija tonkih uprugih sterzhnej, 102 p.

Google Scholar

[6] Eliseev, V.V., Zinov'eva, T.V. Mehanika tonkostennyh konstrukcij. Teorija sterzhnej (2008) Mehanika tonkostennyh konstrukcij. Teorija sterzhnej, 96 p.

Google Scholar

[7] Jelenic, G, Crisfield, MA. Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics (1999) Comp. Meths. Appl. Mech. Engng., 171, pp.141-171.

DOI: 10.1016/s0045-7825(98)00249-7

Google Scholar

[8] Shabana, A. A., Yakoub, R.Y. Three dimensional absolute nodal coordinate formulations for beam elements: theory (2001) ASME Journal of Mechanical Design, 123(4), p.606–613.

DOI: 10.1115/1.1410100

Google Scholar

[9] Reddy, J. N. An Introduction to Nonlinear Finite Element Analysis (2004) An Introduction to Nonlinear Finite Element Analysis, 482 p.

DOI: 10.1093/acprof:oso/9780198525295.003.0001

Google Scholar

[10] Antman, S.S. Nonlinear problems of elasticity (2005) Nonlinear problems of elasticity, 835 p.

Google Scholar

[11] Gerstmayr, J., Shabana, A.A. Analysis of thin beams and cables using the absolute nodal coordinate formulation (2006) Nonlinear Dyn., 45(1-2), pp.109-130.

DOI: 10.1007/s11071-006-1856-1

Google Scholar

[12] Shabana, A.A. Computational continuum mechanics (2008) Computational continuum mechanics, 349 p.

Google Scholar

[13] Wriggers, P. Nonlinear finite element methods (2008) Nonlinear finite element methods, 566 p.

DOI: 10.1007/978-3-540-71001-1_2

Google Scholar

[14] Krenk, S. Non-linear modelling and analysis of solids and structures (2009) Non-linear modelling and analysis of solids and structures, 361р.

DOI: 10.1017/cbo9780511812163

Google Scholar

[15] Ibrahimbegovic, А. Nonlinear Solid Mechanics (2009) Nonlinear Solid Mechanics, 585 p.

Google Scholar

[16] Lalin, V.V. Razlichnye formy uravnenij nelinejnoj dinamiki uprugih sterzhnej (2004) Trudy SPbGPU, 489, pp.121-128.

Google Scholar

[17] Gel'fand, I.M., Fomin, S.V. Variacionnoe ischislenie (1961) Variacionnoe ischisleni, 228 p.

Google Scholar

[18] Lalin, V.V., Rozin, L.A., Kushova, D.A. Variacionnaja postanovka ploskoj zadachi geometricheski nelinejnogo deformirovanija i ustojchivosti uprugih sterzhnej (2013) Magazine of Civil Engineering, 1 (36), pp.87-96.

Google Scholar

[19] Perel'muter, A.B., Slivker, V.I. Ustojchivost' ravnovesija konstrukcij i rodstvennye problem: Tom 1 (2010) Ustojchivost' ravnovesija konstrukcij i rodstvennye problem, 704 p.

Google Scholar

[20] Alfutov, N.A. Osnovyi rascheta na ustoychivost uprugih system (1978) Osnovyi rascheta na ustoychivost uprugih system, 312 p.

Google Scholar

[21] Volmir, A.S. Ustoychivost deformiruemyih system (1967) Ustoychivost deformiruemyih system, 984 p.

Google Scholar

[22] Lalin, V.V., Kushova, D.A. Geometricheski nelineynoe deformirovanie i ustoychivost ploskih uprugih sterzhney s uchetom zhestkostey na rastyazhenie-szhatie, sdvig i izgib (2013).

Google Scholar