[1]
Eurocode (2006): Basis of Structural Design.
Google Scholar
[2]
Eurocode 1 (2003): Actions on structures - Part 1-3 : General actions- Snow loads.
Google Scholar
[3]
Eurocode 3 (2005): Design of steel structures - Part 1-1: General rules and rules for building.
Google Scholar
[4]
Eurocode 3 (2006): Design of steel structures - Part 1-5: Plated structural elements.
Google Scholar
[5]
Eurocode 3 (2006): Design of steel structures - Part 1-8: Design of joints.
Google Scholar
[6]
Faber M. H. Risk and Safety in Engineering – Lecture Notes (2009) Swiss Federal Institute of Technology, Zurich, 283 p.
Google Scholar
[7]
Sarveswaran V., Smith J.W., Blockley D.I. Reliability of corrosion-damaged steel structures using interval probability theory (1998) Structural Safety, 20, pp.237-255.
DOI: 10.1016/s0167-4730(98)00009-5
Google Scholar
[8]
Schwarzlander, H. Probability concepts and theory for engineers (2011) Department of Electrical and Computer Engineering, Syracuse University, NY, USA, 274 p.
Google Scholar
[9]
Ćosić, M., Brčić, S. Iterative Displacement Coefficient Method: Mathematical formulation and numerical analyses (2013) Gradjevinar, 65 (3), pp.199-211.
Google Scholar
[10]
Kovačič, B., Kamnik, R., Kapović, Z. Mathematical analysis of measured displacements with emphasis on polynomial interpolation (2009) Geodetski List, 63 (4), pp.315-327.
Google Scholar
[11]
Kozem Šilih, E., Premrov, M., Šilih, S. Numerical analysis of the horizontal capacity of timber-framewall elements (2013) Civil-Comp Proceedings, pp.102-108.
DOI: 10.4203/ccp.102.127
Google Scholar
[12]
Pintarič, K., Premrov, M. Mathematical modelling of timber-framed walls using fictive diagonal elements (2013) Applied Mathematical Modelling, 37 (16-17), pp.8051-8059.
DOI: 10.1016/j.apm.2013.02.050
Google Scholar