[1]
Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin S. Energy Trapping and Shock Disintegration in a Composite Granular Medium (1996) Physical Review Letters, 96 (5).
DOI: 10.1103/physrevlett.96.058002
Google Scholar
[2]
Hall, S.A., Wood, D.M., Ibraim, E., and Viggiani G. Localised deformation patterning in 2D granular materials revealed by digital image correlation (2010) Granular Matter 12, pp.1-14.
DOI: 10.1007/s10035-009-0155-1
Google Scholar
[3]
Majmudar, T.S., Behringer R.P. Contact force measurements and stress-induced anisotropy in granular materials (2005) Nature 435, pp.1079-1082.
DOI: 10.1038/nature03805
Google Scholar
[4]
Kvapil R. Gravity flow of granular materials in Hoppers and bins in mines (1965) International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 2, Issue 3, p.277–292.
DOI: 10.1016/0148-9062(65)90029-x
Google Scholar
[5]
Revuzhenko A.F. Mechanics of Granular Media (2006) Mechanics of Granular Media, 308 p.
Google Scholar
[6]
Springman, S., Laue, J., Seward L. Physical Modelling in Geotechnics (2010) Physical Modelling in Geotechnics, 1552 p.
DOI: 10.1201/b10554
Google Scholar
[7]
Peijun Guo, Xubin Su, Shear strength, interparticle locking, and dilatancy of granular materials (2007) Canadian Geotechnical Journal, 44(5), pp.579-591.
DOI: 10.1139/t07-010
Google Scholar
[8]
Kenney, T. C., Lau, D., Ofoegbu G. I. Permeability of compacted granular materials (1984) Canadian Geotechnical Journal, 21(4), pp.726-729.
DOI: 10.1139/t84-080
Google Scholar
[9]
Aki, K., Richards P.G. Quantitative seismology. Theory and methods (1980) Quantitative seismology. Theory and methods, 700p.
Google Scholar
[10]
Dhaar. Foundations of Community Medicine, 2/e (2008) Foundations of Community Medicine, 2/e, 820 p.
Google Scholar
[11]
Bártolo, P.J., Bidanda B. Bio-Materials and Prototyping Applications in Medicine (2007) Bio-Materials and Prototyping Applications in Medicine, 227 p.
DOI: 10.1007/978-0-387-47683-4
Google Scholar
[12]
Schwartz, L.M., Johnson, D.L., Feng S. Vibrational modes in granular materials (1984) Physical review letters, v. 52, №10, pp.831-834.
DOI: 10.1103/physrevlett.52.831
Google Scholar
[13]
Grekova, E.F., Kulesh, M.A., Herman G.C. Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model (2009) Bulletin of the Seismological Society of America, 99 (2 B), pp.1423-1428.
DOI: 10.1785/0120080154
Google Scholar
[14]
Grekova E.F. Nonlinear isotropic elastic reduced Cosserat continuum as a possible model for geomedium and geomaterials. Spherical prestressed state in the semilinear material (2012) Journal of seismology, vol 16, issue 4, pp.695-707.
DOI: 10.1007/s10950-012-9299-2
Google Scholar
[15]
Lalin, V., Zdanchuk E. Reduced Cosserat continuum as a possible model for granular medium (2014) Proceedings of the International Conference Innovative Materials, Structures and Technologies, Riga, pp.90-93.
DOI: 10.7250/iscconstrs.2014.15
Google Scholar
[16]
Lalin, V., Zdanchuk E. Nonlinear thermodynamic model for granular medium (2014).
Google Scholar
[17]
Lalin, V., Zdanchuk E. Nonlinear thermodynamic model for reduced Cosserat continuum (2014) International Journal of Mathematical Models and Methods in Applied Sciences, V. 8, pp.208-213.
Google Scholar
[18]
Zdanchuk, E., Lalin V. The theory of continuous medium with free rotation without coupled stresses (2010) Proceedings of the XXXVIII Summer School- Conference Advanced problems in mechanics, pp.771-775.
Google Scholar
[19]
Lurie A.I. Nonlinear theory of elasticity (1990) Nonlinear theory of elasticity, 617 p.
Google Scholar