[1]
M. Balbi, M. Avalos, A. El Bartali, I. Alvarez-Armas. Microcrack growth and fatigue behavior of a duplex stainless steel. Int. J. Fat. 31 (2009) 2006-(2013).
DOI: 10.1016/j.ijfatigue.2008.12.007
Google Scholar
[2]
M. Scharnweber, W. Tirschler, C. G. Oertel, W. Skrotzki, Initiation and propagation of short cracks in austenitic-ferritic duplex steel. Mater. Sci. & Eng. A. 583 (2013) 52-60.
DOI: 10.1016/j.msea.2013.06.059
Google Scholar
[3]
M. Scharnweber, W. Tirschler, V. Mikulich, S. Jacob, Influence of crack length and grain boundaries on the propagation rate of short cracks in austenitic stainless steel. 67 (2012) 677-680.
DOI: 10.1016/j.scriptamat.2012.07.007
Google Scholar
[4]
I. Alvarez-Armas, U. Krupp, M. Balbi, S. Herenu. Growth of short cracks during low and high cycle fatigue in a duplex stainless steel. Int. J. Fat. 41 (2010) 95-100.
DOI: 10.1016/j.ijfatigue.2012.01.010
Google Scholar
[5]
R. Strubbia, S. Herenu, M.C. Marinelli, I. Alvarez-Armas, Short crack nucleation and growth in lean duplex stainless steels fatigued at room temperature. Int. J. Fat. 41 (2012) 90-94.
DOI: 10.1016/j.ijfatigue.2012.01.011
Google Scholar
[6]
I. Konstantin, D. Benjamin, S. Norbert. Analysis of VHCF damage in a duplex stainless steel using hard X-ray diffraction techniques. Int. J. Fat. (2014) in press.
Google Scholar
[7]
G. C. Chai, N. A. Zhou, S. Ciurea, Local plasticity exhaustion in a very high cycle fatigue regime. Scripta Materialia, 66 (2012) 769-772.
DOI: 10.1016/j.scriptamat.2012.02.003
Google Scholar
[8]
S. Herenu, I. Alvarez-Armas, A. Armas. Microstructural changes in a duplex stainless steel during low cycle fatigue. Testing Mater. & Comp. Tech. & Appl., 2009, 51(6), 359-364.
DOI: 10.3139/120.110044
Google Scholar
[9]
I. Alvarez-Armas, M.C. Marinelli, S. Herenu. On the cyclic softening behavior of SAF 2507 duplex stainless steel, Acta. Mater. 54 (2006) 5041-5049.
DOI: 10.1016/j.actamat.2006.06.037
Google Scholar
[10]
J. Polak, M. Petrence, T. Kruml. Cyclic plastic response and fatigue life in superduplex 2507 stainless steel. Int. J. Fat. 32(2010) 279-287.
DOI: 10.1016/j.ijfatigue.2009.06.014
Google Scholar
[11]
I. Alvarez-Armas, M. C. Marinelli, J. A. Malarrı´a, S. Degallaix. Microstructure associated with crack initiation during low-cycle fatigue in a low nitrogen duplex stainless steel. Int. J. Fat. 29 (2007) 758-764.
DOI: 10.1016/j.ijfatigue.2006.06.002
Google Scholar
[12]
B. Dönges, A. Giertler, U. Krupp, C. P. Fritzen, Significance of crystallographic misorientation at phase boundaries for fatigue crack initation in a duplex stainless steel during high and very high cycle fatigue loading. Mater. Sci. & Eng. A. 589 (2014).
DOI: 10.1016/j.msea.2013.09.098
Google Scholar
[13]
M. C. Marinelli, A. El Bartali, J. W. Signorelli, P. Evrard, Activated slip systems and microcrack path in LCF of a duplex stainless steel. Mater. Sci. & Eng. A. 509 (2009) 81-88.
DOI: 10.1016/j.msea.2009.01.012
Google Scholar
[14]
P. K. Chiu, K. L. Weng, S. H. Wang, J.R. Yang, Low-cycle fatigue-induced martensitic transformation in SAF 2205 duplex stainless steel. Mater. Sci. & Eng. A. 398 (2005) 349-359.
DOI: 10.1016/j.msea.2005.03.096
Google Scholar
[15]
G. Chai, Fatigue behaviour of duplex stainless steels in the very high cycle regime. Int. J. Fat. 28 (2006) 1611-1617.
DOI: 10.1016/j.ijfatigue.2005.06.054
Google Scholar
[16]
U. Krupp, H. Knobbe, H. J. Christ, P. Köster, The significance of microstructural barriers during fatigue of a duplex steel in the high- and very-high-cycle-fatigue (HCF/VHCF) regime. Int. J. Fat. 32 (2010) 914-920.
DOI: 10.1016/j.ijfatigue.2009.09.010
Google Scholar
[17]
K. Istomin, B. Dönges, N. Schell, H. J. Christ. Analysis of VHCF damage in a duplex stainless steel using hard X-ray diffraction techniques. Int. J. Fat. 2014, in press.
DOI: 10.1016/j.ijfatigue.2014.04.001
Google Scholar
[18]
Z. Duan, X. F. Ma, H. J. Shi, R. Murai, Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengths. Acta. Mech. Sin. 27 (2011) 778-784.
DOI: 10.1007/s10409-011-0451-5
Google Scholar
[19]
T. Abe, Y. Furuya, S. Matsuoka, Gigacycle fatigue properties of 1800 MPa class spring steel. Fat. Fract. Eng. Mater. Struct. 27(2004) 159-167.
DOI: 10.1111/j.1460-2695.2004.00737.x
Google Scholar
[20]
S. X. Li, P. Y. Zhang, S. R. Yu. Experimental study on very high cycle fatigue of martensitic steel of 2Cr13 under corrosive environment. Fat. Fract. Eng. Mater. Struct. 2014, in press.
DOI: 10.1111/ffe.12197
Google Scholar
[21]
T. Kruml, J. Polark, K. Obrtlik, S. Degallaix. Dislocation-structures in the bands of localized cyclic plastic strain in ausentitic 316L and ausenitic-ferritic duplex stainless steels. Acta Mater. 45 (1997) 5145-5151.
DOI: 10.1016/s1359-6454(97)00178-x
Google Scholar
[22]
K. Makhlouf, H. Sidhom, I. Triguia, C. Braham, Corrosion fatigue crack propagation of a duplex stainless steel X6 CrNiMoCu25-6 in air and in artificial sea water. Int. J. Fat. 25(2003) 167-179.
DOI: 10.1016/s0142-1123(02)00046-4
Google Scholar
[23]
K. N. Krishnan, Mechanism of corrosion fatigue in super duplex stainless steel in 3. 5 percent NaCl solution. Int. J. Fract. 88 (1998) 205-221.
Google Scholar