High Cycle Fatigue Properties of Duplex Stainless Steel in Air and 3.5% NaCl Solution

Article Preview

Abstract:

The high cycle fatigue of super duplex stainless steel of SAF 2507 was investigated by rotating bending fatigue test in both air and 3.5% NaCl environment. The results showed that there is no much reduction of the fatigue life in corrosive environment, which is 90% of the air fatigue strength. In air fatigue, failure happens in ductile mode with austenite grains having finer and straighter fatigue striations than ferrite grains. Width and spacing of striations vary with the orientation and locations when the second cracking occurs. It is not reliable to identify the phase by morphology of striations. In 3.5% NaCl environment, the fracture exhibits a mixed mode of cleavage and quasi-cleavage in ferrites and ductile in austenite grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-120

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Balbi, M. Avalos, A. El Bartali, I. Alvarez-Armas. Microcrack growth and fatigue behavior of a duplex stainless steel. Int. J. Fat. 31 (2009) 2006-(2013).

DOI: 10.1016/j.ijfatigue.2008.12.007

Google Scholar

[2] M. Scharnweber, W. Tirschler, C. G. Oertel, W. Skrotzki, Initiation and propagation of short cracks in austenitic-ferritic duplex steel. Mater. Sci. & Eng. A. 583 (2013) 52-60.

DOI: 10.1016/j.msea.2013.06.059

Google Scholar

[3] M. Scharnweber, W. Tirschler, V. Mikulich, S. Jacob, Influence of crack length and grain boundaries on the propagation rate of short cracks in austenitic stainless steel. 67 (2012) 677-680.

DOI: 10.1016/j.scriptamat.2012.07.007

Google Scholar

[4] I. Alvarez-Armas, U. Krupp, M. Balbi, S. Herenu. Growth of short cracks during low and high cycle fatigue in a duplex stainless steel. Int. J. Fat. 41 (2010) 95-100.

DOI: 10.1016/j.ijfatigue.2012.01.010

Google Scholar

[5] R. Strubbia, S. Herenu, M.C. Marinelli, I. Alvarez-Armas, Short crack nucleation and growth in lean duplex stainless steels fatigued at room temperature. Int. J. Fat. 41 (2012) 90-94.

DOI: 10.1016/j.ijfatigue.2012.01.011

Google Scholar

[6] I. Konstantin, D. Benjamin, S. Norbert. Analysis of VHCF damage in a duplex stainless steel using hard X-ray diffraction techniques. Int. J. Fat. (2014) in press.

Google Scholar

[7] G. C. Chai, N. A. Zhou, S. Ciurea, Local plasticity exhaustion in a very high cycle fatigue regime. Scripta Materialia, 66 (2012) 769-772.

DOI: 10.1016/j.scriptamat.2012.02.003

Google Scholar

[8] S. Herenu, I. Alvarez-Armas, A. Armas. Microstructural changes in a duplex stainless steel during low cycle fatigue. Testing Mater. & Comp. Tech. & Appl., 2009, 51(6), 359-364.

DOI: 10.3139/120.110044

Google Scholar

[9] I. Alvarez-Armas, M.C. Marinelli, S. Herenu. On the cyclic softening behavior of SAF 2507 duplex stainless steel, Acta. Mater. 54 (2006) 5041-5049.

DOI: 10.1016/j.actamat.2006.06.037

Google Scholar

[10] J. Polak, M. Petrence, T. Kruml. Cyclic plastic response and fatigue life in superduplex 2507 stainless steel. Int. J. Fat. 32(2010) 279-287.

DOI: 10.1016/j.ijfatigue.2009.06.014

Google Scholar

[11] I. Alvarez-Armas, M. C. Marinelli, J. A. Malarrı´a, S. Degallaix. Microstructure associated with crack initiation during low-cycle fatigue in a low nitrogen duplex stainless steel. Int. J. Fat. 29 (2007) 758-764.

DOI: 10.1016/j.ijfatigue.2006.06.002

Google Scholar

[12] B. Dönges, A. Giertler, U. Krupp, C. P. Fritzen, Significance of crystallographic misorientation at phase boundaries for fatigue crack initation in a duplex stainless steel during high and very high cycle fatigue loading. Mater. Sci. & Eng. A. 589 (2014).

DOI: 10.1016/j.msea.2013.09.098

Google Scholar

[13] M. C. Marinelli, A. El Bartali, J. W. Signorelli, P. Evrard, Activated slip systems and microcrack path in LCF of a duplex stainless steel. Mater. Sci. & Eng. A. 509 (2009) 81-88.

DOI: 10.1016/j.msea.2009.01.012

Google Scholar

[14] P. K. Chiu, K. L. Weng, S. H. Wang, J.R. Yang, Low-cycle fatigue-induced martensitic transformation in SAF 2205 duplex stainless steel. Mater. Sci. & Eng. A. 398 (2005) 349-359.

DOI: 10.1016/j.msea.2005.03.096

Google Scholar

[15] G. Chai, Fatigue behaviour of duplex stainless steels in the very high cycle regime. Int. J. Fat. 28 (2006) 1611-1617.

DOI: 10.1016/j.ijfatigue.2005.06.054

Google Scholar

[16] U. Krupp, H. Knobbe, H. J. Christ, P. Köster, The significance of microstructural barriers during fatigue of a duplex steel in the high- and very-high-cycle-fatigue (HCF/VHCF) regime. Int. J. Fat. 32 (2010) 914-920.

DOI: 10.1016/j.ijfatigue.2009.09.010

Google Scholar

[17] K. Istomin, B. Dönges, N. Schell, H. J. Christ. Analysis of VHCF damage in a duplex stainless steel using hard X-ray diffraction techniques. Int. J. Fat. 2014, in press.

DOI: 10.1016/j.ijfatigue.2014.04.001

Google Scholar

[18] Z. Duan, X. F. Ma, H. J. Shi, R. Murai, Gigacycle fatigue behaviors of two SNCM439 steels with different tensile strengths. Acta. Mech. Sin. 27 (2011) 778-784.

DOI: 10.1007/s10409-011-0451-5

Google Scholar

[19] T. Abe, Y. Furuya, S. Matsuoka, Gigacycle fatigue properties of 1800 MPa class spring steel. Fat. Fract. Eng. Mater. Struct. 27(2004) 159-167.

DOI: 10.1111/j.1460-2695.2004.00737.x

Google Scholar

[20] S. X. Li, P. Y. Zhang, S. R. Yu. Experimental study on very high cycle fatigue of martensitic steel of 2Cr13 under corrosive environment. Fat. Fract. Eng. Mater. Struct. 2014, in press.

DOI: 10.1111/ffe.12197

Google Scholar

[21] T. Kruml, J. Polark, K. Obrtlik, S. Degallaix. Dislocation-structures in the bands of localized cyclic plastic strain in ausentitic 316L and ausenitic-ferritic duplex stainless steels. Acta Mater. 45 (1997) 5145-5151.

DOI: 10.1016/s1359-6454(97)00178-x

Google Scholar

[22] K. Makhlouf, H. Sidhom, I. Triguia, C. Braham, Corrosion fatigue crack propagation of a duplex stainless steel X6 CrNiMoCu25-6 in air and in artificial sea water. Int. J. Fat. 25(2003) 167-179.

DOI: 10.1016/s0142-1123(02)00046-4

Google Scholar

[23] K. N. Krishnan, Mechanism of corrosion fatigue in super duplex stainless steel in 3. 5 percent NaCl solution. Int. J. Fract. 88 (1998) 205-221.

Google Scholar