Effect of Carbon and Nitrogen Modified TiO2 on Photoluminescence Property and Photocatalytic Activity

Article Preview

Abstract:

Carbon (C) and Nitrogen (N) modified TiO2 photocatalysts were prepared by using two different precursors namely peat and urea using commercial TiO2-P25. The results from HR-TEM and XPS analyses shows different interactions between C-TiO2 and N-TiO2 photocatalysts where C is only coated on top of TiO2 while N is chemically bonded in TiO2 particle. Higher photocatalytic activity for both C and N modified TiO2 were observed under degradation of reactive red 4 dye (RR4) with the degradation rate were c.a 2.5 and 2.7 times faster compared with pristine TiO2. The photoluminescence (PL) analysis data showed the lowest PL intensity over C coated TiO2 followed by pristine TiO2 while N doped TiO2 exhibited the highest PL intensity. The lowest PL intensity of C coated TiO2 was due to the presence of C as electron acceptor while the highest PL intensity for N doped TiO2 was due to the oxygen vacancies and TiO2 defect structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1197-1201

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Factorovich, L. Guz, R. Candal, Adv. Phys. Chem. (2011) 1-8 doi: 10. 1155/2011/821204.

Google Scholar

[2] J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard. Mater. 168 (2009) 253-261.

Google Scholar

[3] L. Gomathi Devi, K. Eraiah Rajashekhar, J. Mol. Catal. A: Chem. 334 (2011) 65-76.

Google Scholar

[4] R. Asahi, T. Morikawa, T. Ohwaki. K. Aoki, Y. Taga, Science 293 (2001) 269-271.

DOI: 10.1126/science.1061051

Google Scholar

[5] W.K. Jo, J.T. Kim, J. Hazard. Mater. 164 (2009) 360-366.

Google Scholar

[6] X.M. Yan, J. Kang, L. Gao, L. Xiong, P. Mei, Appl. Surf. Sci. 265 (2013) 778-783.

Google Scholar

[7] M.A. Nawi, I. Nawawi, Appl. Catal. A: Gen. 453 (2013) 80– 91.

Google Scholar

[8] J. Arana, J.M. Dona-Rodriguez, C.G.I. Cabo, J. Perez-Pena, Appl. Catal. B 53 (2004) 221–232.

Google Scholar

[9] Y. Li, S. Sun, M. Ma, Y. Ouyang, W. Yan, Chem. Eng. J. 142 (2008) 147–155.

Google Scholar

[10] B. Zhu, L. Zou, J. Environ. Manage. 90 (2009) 3217–3225.

Google Scholar

[11] Y. Park, W. Kim, H. Park, T. Tachikawa, W. Choi, Appl. Catal. B 91(2009) 355–361.

Google Scholar

[12] G. -T. Lim, K.H. Kim, J. Park, S. -H. Ohk, , D.L. Cho, J. Ind. Eng. Chem. 16 (2010) 723–727.

Google Scholar

[13] J. Zhang, Z. -H. Huang, Y. Xu, F. -y. Kang, New Carbon Mater. 26 (2011) 63–70.

Google Scholar

[14] M. Toyoda, T. Yano, B. Tryba, Appl. Catal. B 88 (2009) 160–164.

Google Scholar

[15] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90 (2006) 1773–1787.

DOI: 10.1016/j.solmat.2005.11.007

Google Scholar

[16] S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. DiValentin, G. Pacchioni, J. Am. Chem. Soc. 128 (2006) 15666–15671.

DOI: 10.1021/ja064164c

Google Scholar

[17] Z. Wu, F. Dong, W. Zhao, S. Guo, J. Hazard. Mater. 157 (2008) 57–63.

Google Scholar

[18] L. Mi, P. Xu, H. Shen, P.N. Wang, J. Photochem. Photobiol. A 193 (2008) 222–227.

Google Scholar

[19] L.Q. Jing, B.F. Xin, F.L. Yuan, L.P. Xue, B.X. Wang, H.G. Fu, J. Phys. Chem. B. 110 (2006) 17860–17865.

Google Scholar