[1]
S. D. Bakshi, B. Basu, and S. K. Mishra, Microstructure and mechanical properties of sinter-HIPed ZrO2–ZrB2 composites, Composites: Part A. 37 (2006) 2128–2135.
DOI: 10.1016/j.compositesa.2005.11.012
Google Scholar
[2]
S.G. Huang, K. Vanmeensel, J. Vleugels, Powder synthesis and densification of ultrafine B4C-ZrB2 composite by pulsed electrical current sintering, J. of the European Ceram. Soc. 34 (2014) 1923-(1933).
DOI: 10.1016/j.jeurceramsoc.2014.01.022
Google Scholar
[3]
Yu.V. Petrov, B.L. Karihaloo, V.V. Bratov, and A.M. Bragov, Multi-scale dynamic fracture model for quasi-brittle materials, Int. J. of Engng Sci. 61 (2012) 3–9.
DOI: 10.1016/j.ijengsci.2012.06.004
Google Scholar
[4]
E. G. Skripnyak, V.A. Skripnyak, and V. V. Skripnyak, Fracture of nanoceramics with porous structure at shock wave loadings, Shock Compression of Condensed Matter. AIP Conf. Proc. 1426 (2012) 965 -970.
DOI: 10.1063/1.3686485
Google Scholar
[5]
Q. Liu, W. Han, and P. Hu, Microstructure and mechanical properties of ZrB2–SiC nanocomposite ceramic, Scripta Materialia, 61 (2009) 690-692.
DOI: 10.1016/j.scriptamat.2009.05.041
Google Scholar
[6]
Yu. Teng , Zh. Sun, K. Zhang, W. Lu, Microstructure and mechanical properties of high-pressure sintered Al2O3/SiC nanocomposites, J. of Alloys and Comp. 578 (2013) 67-71.
DOI: 10.1016/j.jallcom.2013.05.009
Google Scholar
[7]
P.D. Zavattieri, P.V. Raghuram, and H.D. Espinosa, A computational model of ceramic microstructures subjected to multi-axial dynamic loading, J Mech Phys. Solids. 49 (2001) 27–68.
DOI: 10.1016/s0022-5096(00)00028-4
Google Scholar
[8]
W.X. Zhang, T.J. Wang, X. Chen, Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites, Int. J. of Plasticity. 26 (2010) 957-975.
DOI: 10.1016/j.ijplas.2009.12.002
Google Scholar
[9]
V. Tomar, Analyses of the role of grain boundaries in mesoscale dynamic fracture resistance of SiC–Si3N4 intergranular nanocomposites, Engng Fract. Mech. 75 (2008) 4501-4512.
DOI: 10.1016/j.engfracmech.2008.04.020
Google Scholar
[10]
P.R. Mantena, A. Al-Ostaz, and A.H.D. Cheng, Dynamic response and simulations of nanoparticle-enhanced composites, Composites Sci. and Tech. 69 (2009) 772-779.
DOI: 10.1016/j.compscitech.2008.02.035
Google Scholar
[11]
S. M. Hasheminejad, and R. Avazmohammadi, Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects, Composites Sci. and Tech. 69 (2009) 2538-2546.
DOI: 10.1016/j.compscitech.2009.07.007
Google Scholar
[12]
B. Lv, F.C. Zhang, H.H. Luo, M. Zhang, Inter-phase microstress on the grain boundary in Al2O3/SiC nanocompositesm, Scripta Materialia. 64 (2011) 260-263.
DOI: 10.1016/j.scriptamat.2010.10.009
Google Scholar
[13]
G. R. Johnson, , and T. J. Holmquist, Response of boron carbide subject to large strains, high strain rates and high pressures, J. Appl. Phys. 85 (1999) 8060–8073.
DOI: 10.1063/1.370643
Google Scholar
[14]
A.N. Parshikov, S.A. Medin, I.I. Loukashenko, and V.A. Milekhin, Improvements in SPH Method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities, Int. J. Impact Eng. 24 (2000) 779-796.
DOI: 10.1016/s0734-743x(99)00168-2
Google Scholar
[15]
Parshikov A.N., Medin S.A., Smoothed particle hydrodynamics using interparticle interparticle contact algorithms, J. Comp. Phys. 180 (2002) 358-382.
DOI: 10.1006/jcph.2002.7099
Google Scholar
[16]
Gust, W. H. , and Royce, E. B. Dynamic yield strengths of B4C, BeO, and Al2O3 ceramics, J. Appl. Phys. 42 (1971) 276–295.
DOI: 10.1063/1.1659584
Google Scholar
[17]
Gust, W. H., Holt, A. C., and Royce, E. B. Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds, J. Appl. Phys. 44 (1973) 550–560.
DOI: 10.1063/1.1662224
Google Scholar
[18]
S.S. Batsanov, Effects of explosions on materials: Modification and synthesis under high-pressure shock compression,. Springer, (1994).
Google Scholar
[19]
"Physical values. Handbook. Eds. By Babichev, A.P., Bratkovskii, A.M. et al. Moscow. Energoatomizdat, (1991).
Google Scholar
[20]
S. Levy, and J.F. Molinari Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes, J. of the Mech. and Phys. of Solids. 58 (2010) 12–26.
DOI: 10.1016/j.jmps.2009.09.002
Google Scholar
[21]
E.G. Skripnyak, V.V. Skripnyak, I.K. Vaganova, and V.A. Skripnyak, Fracture of Ceramic Materials under Dynamic Loadings,. Proc. 19th European Conf. on Fracture (ECF19) Kazan, Russia. 639 (2012).
DOI: 10.7712/100016.1819.11114
Google Scholar
[22]
I.A. Ovid'ko, Cracks nucleation in nanomaterials at high-speed and quasistatic modes deformations materials, Physics and Mechanics. 12 (2011) 76-101.
Google Scholar