Mechanical Behavior of Light Alloys with Bimodal Grain Size Distribution

Article Preview

Abstract:

Deformation and damage at the meso-scale level in representative volumes (RVE) of light ultrafine grained (UFG) alloys with distribution of grain size were simulated in wide loading conditions. The computational models of RVE were developed using the data of structure researches aluminum and magnesium UFG alloys on meso-, micro -, and nanoscale levels. The critical fracture stress on meso-scale level depends not only probabilistic of grain size distribution in RVE but relative volumes of coarse grains. Microcracks nucleation is associated with strain localization in UFG partial volumes in alloys with bimodal grain size distribution. Microcracks branch in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The distribution the shear stress and the local particle velocity takes place at mesoscale level under dynamic loading of UFG alloys with bimodal grain size. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-213

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.Z. Valiev, N.A. Enikeev, M. Yu. Murashkin, et al., On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, Scripta Materialia. 63 (2010) 949–952.

DOI: 10.1016/j.scriptamat.2010.07.014

Google Scholar

[2] V.A. Pozdnyakov, Ductility of nanocrystalline materials with a bimodal grain structure. Tech. Phys. Lett. 33 (2007) 1004–1006.

DOI: 10.1134/s1063785007120061

Google Scholar

[3] G.A. Malygin, Strength and plasticity of nanocrystalline metals with a bimodal grain structure, Phys. Solid State. 50 (2008) 1032–1038.

DOI: 10.1134/s1063783408060061

Google Scholar

[4] M. J. Prasad, N.V. Suwas, S., Chokshi, A.H., Microstructural evolution and mechanical characteristics in nanocrystalline nickel with a bimodal grain-size distribution, Mater. Sci. Eng. A. 503 (2009) 86–91.

DOI: 10.1016/j.msea.2008.01.099

Google Scholar

[5] S. Ramtani, G. Dirras, H.Q. Bui, A bimodal bulk ultra-fine-grained nickel: experimental and micromechanical investigations, Mech. Mater. 42 (2010) 522–536.

DOI: 10.1016/j.mechmat.2010.02.001

Google Scholar

[6] S.R. Agnew, J.A. Horton, T.M. Lillo, D.W. Brown Enhanced ductility in strongly textured magnesium produced by equal channel angular processing, Scripta Materialia 50 77–381 ()(2004).

DOI: 10.1016/j.scriptamat.2003.10.006

Google Scholar

[7] T. Mukai, M. Yamanoi, H. Watanabe et al. Effect of grain refinement on tensile ductility in ZK60 magnesium alloy under dynamic loading, Mater. Trans. 42 (2001) 1177-1181.

DOI: 10.2320/matertrans.42.1177

Google Scholar

[8] G. J. Fan, H. Choo, PP.K. Liaw, E.J. Lavernia, Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution, Acta Mater. 54 (2006) 1759–1766.

DOI: 10.1016/j.actamat.2005.11.044

Google Scholar

[9] B. Ahn, E.J. Lavernia, S.R. Nutt, Dynamic observations of deformation in an ultrafine-grained Al–Mg alloy with bimodal grain structure, J. Mater. Sci. 43 (2008) 403–7408.

DOI: 10.1007/s10853-008-2950-1

Google Scholar

[10] Z. H. Lee, V. Radmilovic, B. Ahn, , E.J. Lavernia, S.R. Nutt, Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al–Mg alloy., Metall. Mater. Trans. A. 41 (2010) 795–801.

DOI: 10.1007/s11661-009-0007-y

Google Scholar

[11] B. Q. Han, Z. Lee, D. Witkin, S.R. Nutt, E.J. Lavernia, Deformation behavior of bimodal nanostructured 5083 Al alloys, Metall. Mater. Trans. A. 36 (2005) 57– 965.

DOI: 10.1007/s11661-005-0289-7

Google Scholar

[12] B. Q. Han, J.Y. Huang, Y.T. Zhu, E.J. Lavernia, Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys, Acta Mater. 54 (2006) 3015–3024.

DOI: 10.1016/j.actamat.2006.02.045

Google Scholar

[13] E. G. Skripnyak, V.A. Skripnyak, and V. V. Skripnyak, Fracture of nanoceramics with porous structure at shock wave loadings, Shock Compression of Condensed Matter. AIP Conf. Proc. 1426 (2012) 965 -970.

DOI: 10.1063/1.3686485

Google Scholar

[14] V.A. Skripnyak, Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation, Shock Compression of Condensed Matter. AIP Conf. Proc. 1426 (2012) 965-970.

DOI: 10.1063/1.3686438

Google Scholar

[15] L. Zhu, J. Lu, Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution, Int., J. of Plasticity. 30–31 (2012) 166–184.

DOI: 10.1016/j.ijplas.2011.10.003

Google Scholar

[16] S. P. Joshi, K.T. Ramesh, B.Q. Han, E.J. Lavernia, Modeling the constitutive response of bimodal metals, Metall. Mater. Trans. A. 37 (2006) 397–2404.

DOI: 10.1007/bf02586214

Google Scholar

[17] H. Simchi, A. Simchi, Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution, Mater. Sci. Eng. A. 507 (2009) 200–206.

DOI: 10.1016/j.msea.2009.01.037

Google Scholar

[18] A. N. Parshikov, S.A. Medin, Smoothed particle hydrodynamics using interparticle interparticle contact algorithms, J. Compp. Phys. 180 (2002) 358-382.

DOI: 10.1006/jcph.2002.7099

Google Scholar

[19] V. Z. Parton, E.M. Morozov, Mechanics of elastic-plastic fracture: Fundamentals of fracture mechanics. KomKniga. (2008).

Google Scholar

[20] D. T. Casem and D. P. Dandekar, Shock and mechanical response of 2139-T8 aluminum, J. Appl. Phys., J. Appl. Phys. 111 (2012) 063508.

DOI: 10.1063/1.3694661

Google Scholar

[21] J. D. Clayton, D.L. McDowell, A multiscale multiplicative decomposition for elastoplasticity of polycrystals, Int. J. of Plasticity. 19 (2003) 1401–1444.

DOI: 10.1016/s0749-6419(02)00109-2

Google Scholar

[22] H. J. Frost, and M.F. Ashby, Deformation Mechanism Maps. The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, (1982).

Google Scholar

[23] D. N. Seidman, E.A. Marquis, D.C. Dunand, Precipiation strengthening at ambient and elevated temperatures of heat-treateble Al (Sc) alloys, Acta Meterialia. 50 (2002) 4021-4035.

DOI: 10.1016/s1359-6454(02)00201-x

Google Scholar

[24] N. Herzig, et. al., Modeling of mechanical behavior of ultra-fine grained titanium alloys at high strain rates, in Proc. 3-rd Int. Conf. on High Speed Forming. March 11-12, 2008. Dortmund, Germany. (2008) 141-150.

Google Scholar

[25] V.A. Skripnyak, et. al., Mechanical behavior of fine-grained metal alloys under dynamic loadings, in Proc. Int. Conf. XI Khariton's Topical Scientific Readings, 2007, Sarov, Russia. (2007) 369-374.

Google Scholar

[26] N. Herzig, et. al., The mechanical behavior of ultra-fine grained Ti-8-22-22S over a wide range of strain rates, in Proc. 3-rd Int. Conf. on High Speed Forming, March, 11-12, 2008. Dortmund, Germany. (2008) 65-74.

Google Scholar

[27] V.A. Skripnyak, E.G. Skripnyak, Deformation and fracture of UFG alloys under shock wave loadings. Computer simulation on the mesoscopic levels, in Proc. Int. Conference Shock Wave in Condensed Matter. Saint-Petersburg – Novgorod. 5-10 September (2010).

DOI: 10.1063/1.3686485

Google Scholar

[28] V. Vinogradov, Z. Hashin, Probabilistic energy based model for prediction of transverse cracking in cross-ply laminates, Int. J. of Solids and Structures. 42 (2005) 365–392.

DOI: 10.1016/j.ijsolstr.2004.06.043

Google Scholar

[29] L. Zhu, S. Shi, K. Lu, J. Lu, A statistical model for predicting the mechanical properties of nanostructured metals with bimodal grain size distribution, Acta Materialia. 60 (2012) 5762–5772.

DOI: 10.1016/j.actamat.2012.06.059

Google Scholar

[30] I. Ulacia, C.P. Salisbury, I. Hurtado, M.J. Worswick, Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures, J. of Materials Processing Technology. 211 Issue 5 1 May (2011).

DOI: 10.1016/j.jmatprotec.2010.09.010

Google Scholar