Production Tribological Behavior Feature of Metallic Nanoparticle Additives

Article Preview

Abstract:

Today an application of metal nanoparticles as additives to base oils is widely studied in tribological centers in many countries. The additives containing nanoparticles essentially raise the wear resistance ability of lubricants and reduce the friction coefficient. However, such lubricants are still not widely used. This paper gives a brief analysis of the problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

275-280

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] AddNano,: introducing innovative nanotechnology into the value chain of the lubricants market. Press-release. – European funded AddNano Project. (2009).

Google Scholar

[2] J.M. Martin and N. Ohmae, Nanolubricants, John Wiley and Sons (New-York), (2008).

Google Scholar

[3] J. Zhou, Z. Wu, Z. Zhang , W. Liu, Q. Xue, Tribological behavior and lubricating mechanism of Cu nanoparticles in oil, Tribology Letters. 8 (2000) 213–218.

Google Scholar

[4] D. Garkunov, E. Melnikov, V. Gavrilyuk, Tribotechnique, KNORUS. (2011).

Google Scholar

[5] J. Padgurskas, R. Rukuiza, R. Kreivaitis, S.J. Asadauskas, D. Brazinskiene. Tribologic behaviour and suspension stability of iron and copper nanoparticles in rapeseed and mineral oils, Tribology - Materials, Surfaces&Interfaces. 3 (2009) 97-102.

DOI: 10.1179/175158309x12560424605196

Google Scholar

[6] Q. He, J. Ye, H. Liu, J. Li. Application of Cu nanoparticles as N32 base oil additives, Front. Mech. Eng. China. 5 (2010) 93–97.

DOI: 10.1007/s11465-009-0083-0

Google Scholar

[7] D. Singh, J. Routbort, Effects of nanofluids on heavy vehicle systems. Presentation made by Argonne National Laboratory, University of Chicago, to the US Department of Energy. (2006).

Google Scholar

[8] Y.D. Zhang, J.S. Yan, L.G. Yu, P.Y. Zhang. Effect of Nano-Cu Lubrication Additive on the Contact Fatigue Behavior of Steel, Tribology Letters. 37 (2010) 203–207.

DOI: 10.1007/s11249-009-9515-6

Google Scholar

[9] Y. Choi, C. Lee, Y. Hwang, M. Park, J. Lee, C. Choi, M. Jung. Tribological behavior of copper nanoparticles as additives in oil, Current Applied Physics. 9 (2009) 124–127.

DOI: 10.1016/j.cap.2008.12.050

Google Scholar

[10] I. P. Chernov, Yu.P. Cherdantsev, N.N. Nikitenkov, A.M. Lider, Yu.V. Martynenko, A.S. Surkov, and M. Kroening, Effect of hydrogen and helium on the properties of nuclear reactor materials, Bulletin of the Russian Academy of Sciences: Physics. 72 (2008).

DOI: 10.3103/s1062873808070228

Google Scholar

[11] N.N. Nikitenkov, Yu.I. Tyurin, I.P. Chernov, A.M. Lider, and A.V. Skirnevskii, Radiation-enhanced and thermostimulated hydrogen release from palladium and zirconium, Journal of Surface Investigation. 2 (2008) 440-443.

DOI: 10.1134/s102745100803021x

Google Scholar

[12] H. Yu, Y. Xu, P. Shi, B. Xu, X. Wang, Q. Liu, Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant, Trans. Nonferrous Met. Soc. China. 18 (2008) 636-641.

DOI: 10.1016/s1003-6326(08)60111-9

Google Scholar

[13] Y. Zhao, Z. Zhang, H. Dang, Fabrication and tribological properties of Pb nanoparticles, Journal of Nanoparticle Research. 6 (2004) 47–51.

DOI: 10.1023/b:nano.0000023223.79545.af

Google Scholar

[14] I.P. Chernov, Yu.P. Cherdantsev, A.M. Lider, N.N. Niketenkov, Yu.V. Martynenko, S.E. Lukonin, and A.K. Gan, Influence of hydrogen and helium implantation on the properties of structural materials, Journal of Surface Investigation. 2 (2008).

DOI: 10.1134/s1027451008020092

Google Scholar

[15] I.P. Chernov, Y.P. Cherdantsev, A.M. Lider, Y.I. Tyurin, N.S. Pushilina, and S.V. Ivanova, Hydrogen permeability of protective coating formed by electron treatment of zirconium alloys, Journal of Surface Investigation. 4 (2010) 255-261.

DOI: 10.1134/s1027451010020151

Google Scholar

[16] L. Kolodziejczyk, D. Martıґnez-Martıґnez, T.C. Rojas, A. Fernaґndez, J.C. Sanchez-Lopez, Surface-modified Pd nanoparticles as a superior additive for lubrication, Journal of Nanoparticle Research. 9 (2007) 639-645.

DOI: 10.1007/s11051-006-9124-3

Google Scholar

[17] S. Ma, S. Zheng, D. Cao, H. Guo, Anti-wear and friction performance of ZrO2 nanoparticles as lubricant additive, Particuology. 8 (2010) 468–472.

DOI: 10.1016/j.partic.2009.06.007

Google Scholar

[18] G. Liu, X. Li, N. Lu, R. Fan, Enhancing AW/EP property of lubricant oil by adding nano Al/Sn particles, Tribology Letters. 18 (2005) 85-90.

DOI: 10.1007/s11249-004-1760-0

Google Scholar

[19] H. Shi, X. Fu, X. Zhou and Z. Hu, Preparation of organic fluids with high loading concentration of Ag2S nanoparticles using the extractant Cyanex 301, Journal of Materials Chemistry. 16 (2006) 2097–2101.

DOI: 10.1039/b516917h

Google Scholar

[20] N.V. Martyushev, I.V. Semenkov, Y.N. Petrenko, Impact of protective release coatings with nanopowders on the quality of bronze castings surface, Advanced Materials Res. 872 (2014) 112-117.

DOI: 10.4028/www.scientific.net/amr.872.112

Google Scholar

[21] N.V. Martyushev, I.V. Semenkov, Y.N. Petrenko, Structure and properties of leaded tin bronze under different crystallization conditions, Advanced Materials Res. 872 (2014) 89-93.

DOI: 10.4028/www.scientific.net/amr.872.89

Google Scholar

[22] N.V. Martyushev, I.V. Semenkov, Activation of copper and alumina powders in ball mill, Advanced Materials Res. 872 (2014) 137-141.

DOI: 10.4028/www.scientific.net/amr.872.137

Google Scholar

[23] I.G. Vidayev, N.V. Martyushev, A.S. Ivashutenko, A.M. Bogdan, The resource efficiency assessment technique for the foundry production, Advanced Materials Res. 880 (2014) 141-145.

DOI: 10.4028/www.scientific.net/amr.880.141

Google Scholar

[24] N.V. Martyushev, I.V. Semenkov, The possibility of casting surface alloying by nanopowders, Advanced Materials Res. 880 (2014) 272-275.

DOI: 10.4028/www.scientific.net/amr.880.272

Google Scholar