A Real-Time NCC-Based Template Matching on Modern CPUs

Article Preview

Abstract:

This paper proposes an optimal method for NCC-based template matching on modern CPUs for time-critical applications. In order to achieve the superior computation efficiency, the brand-and-bound (BB) scheme and the streaming SIMD extensions 2 (SSE2) instructions are employed to quickly find out the target object with rotation, translation and scaling in monochrome or color image. And we show how to reject unpromising image location very quickly using BB scheme in search process. Furthermore, an efficient implementation for similarity coefficient calculation is also pointed out by using the integration SSE2 instructions. Finally, the results show that the proposed method is very powerful when dealing with the NCC-based template matching in monochrome and color images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1288-1292

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. -M. Tsai, C. -T. Lin and J. -F. Chen: Pattern Recognition Letters vol. 24 (2003), p.2525.

Google Scholar

[2] J. Lewis: Vision Interface (1995), p.120.

Google Scholar

[3] K. Briechle and U. D. Hanebeck: Aerospace/Defense Sensing, Simulation, and Controls (2001), p.95.

Google Scholar

[4] M. J. McDonnell: Computer Graphics and Image Processing Vol. 17 (1981), p.65.

Google Scholar

[5] C. Sun: Image and Vision Computing Vol. 20 (2002), p.981.

Google Scholar

[6] S. Mattoccia, F. Tombari and L. Di Stefano: IEEE Transactions on Image Processing Vol. 17 (2008), p.528.

Google Scholar

[7] S. Mattoccia, F. Tombari and L. Di Stefano: Pattern Recognition Letters Vol. 32 (2011), p.694.

DOI: 10.1016/j.patrec.2010.12.004

Google Scholar

[8] W. Shou-Der and L. Shang-Hong: IEEE Transactions on Image Processing Vol. 17 (2008), p.2227.

Google Scholar

[9] C. H. Lampert, M. B. Blaschko and T. Hofmann: Computer Vision and Pattern Recognition (2008), p.1.

Google Scholar

[10] L. Di Stefano, S. Mattoccia and F. Tombari: Computer Architecture for Machine Perception (2005), p.193.

Google Scholar

[11] J. Kadidlo and A. Strey: Euromicro Conference on Parallel, Distributed and Network-Based Processing (2008), p.407.

Google Scholar

[12] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua and N. Navab: IEEE Conference on Computer Vision and Pattern Recognition (2010), p.2257.

DOI: 10.1109/cvpr.2010.5539908

Google Scholar

[13] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab and V. Lepetit: IEEE International Conference on Computer Vision (2011), p.858.

DOI: 10.1109/iccv.2011.6126326

Google Scholar

[14] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua and V. Lepetit: IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 34 (2012), p.876.

DOI: 10.1109/tpami.2011.206

Google Scholar

[15] Y. Konishi, Y. Kotake, Y. Ijiri and M. Kawade: Computer Vision–ECCV 2012 (2012), p.607.

Google Scholar

[16] C. -S. Chen, C. -L. Huang and C. -W. Yeh: Advanced Science Letters vol. 9 (2012), p.762.

Google Scholar